ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipslid GIF version

Theorem ipslid 12643
Description: Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.)
Assertion
Ref Expression
ipslid (·𝑖 = Slot (Β·π‘–β€˜ndx) ∧ (Β·π‘–β€˜ndx) ∈ β„•)

Proof of Theorem ipslid
StepHypRef Expression
1 df-ip 12568 . 2 ·𝑖 = Slot 8
2 8nn 9099 . 2 8 ∈ β„•
31, 2ndxslid 12500 1 (·𝑖 = Slot (Β·π‘–β€˜ndx) ∧ (Β·π‘–β€˜ndx) ∈ β„•)
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   = wceq 1363   ∈ wcel 2158  β€˜cfv 5228  β„•cn 8932  8c8 8989  ndxcnx 12472  Slot cslot 12474  Β·π‘–cip 12555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fv 5236  df-ov 5891  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-ndx 12478  df-slot 12479  df-ip 12568
This theorem is referenced by:  ipsipd  12654  ressipg  12657  prdsex  12735  sraval  13589  sralemg  13590  srascag  13594  sravscag  13595  sraipg  13596  sraex  13598
  Copyright terms: Public domain W3C validator