| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ipslid | GIF version | ||
| Description: Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.) |
| Ref | Expression |
|---|---|
| ipslid | ⊢ (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ip 13094 | . 2 ⊢ ·𝑖 = Slot 8 | |
| 2 | 8nn 9246 | . 2 ⊢ 8 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13023 | 1 ⊢ (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 ℕcn 9078 8c8 9135 ndxcnx 12995 Slot cslot 12997 ·𝑖cip 13081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-ndx 13001 df-slot 13002 df-ip 13094 |
| This theorem is referenced by: ipsipd 13181 ressipg 13184 prdsex 13268 prdsval 13272 sraval 14366 sralemg 14367 srascag 14371 sravscag 14372 sraipg 14373 sraex 14375 |
| Copyright terms: Public domain | W3C validator |