Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8p5e13 | GIF version |
Description: 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8p5e13 | ⊢ (8 + 5) = ;13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 9151 | . 2 ⊢ 8 ∈ ℕ0 | |
2 | 4nn0 9147 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | 2nn0 9145 | . 2 ⊢ 2 ∈ ℕ0 | |
4 | df-5 8933 | . 2 ⊢ 5 = (4 + 1) | |
5 | df-3 8931 | . 2 ⊢ 3 = (2 + 1) | |
6 | 8p4e12 9417 | . 2 ⊢ (8 + 4) = ;12 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 9405 | 1 ⊢ (8 + 5) = ;13 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5851 1c1 7768 + caddc 7770 2c2 8922 3c3 8923 4c4 8924 5c5 8925 8c8 8928 ;cdc 9336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-sub 8085 df-inn 8872 df-2 8930 df-3 8931 df-4 8932 df-5 8933 df-6 8934 df-7 8935 df-8 8936 df-9 8937 df-n0 9129 df-dec 9337 |
This theorem is referenced by: 8p6e14 9419 |
Copyright terms: Public domain | W3C validator |