Step | Hyp | Ref
| Expression |
1 | | cnex 7996 |
. . . 4
⊢ ℂ
∈ V |
2 | 1 | a1i 9 |
. . 3
⊢ (𝜑 → ℂ ∈
V) |
3 | | 0zd 9329 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℤ) |
4 | | plyaddlem.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
5 | 4 | nn0zd 9437 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | 3, 5 | fzfigd 10502 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
7 | 6 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) |
8 | | plyaddlem.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
9 | 8 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℂ) |
10 | | elfznn0 10180 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) |
11 | 10 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
12 | 9, 11 | ffvelcdmd 5694 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝐴‘𝑘) ∈ ℂ) |
13 | | simplr 528 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑧 ∈ ℂ) |
14 | 13, 11 | expcld 10744 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑧↑𝑘) ∈ ℂ) |
15 | 12, 14 | mulcld 8040 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
16 | 7, 15 | fsumcl 11543 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
17 | | plyaddlem.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
18 | 17 | nn0zd 9437 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | 3, 18 | fzfigd 10502 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
20 | 19 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
21 | | plyaddlem.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
22 | 21 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐵:ℕ0⟶ℂ) |
23 | | elfznn0 10180 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
24 | 23 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
25 | 22, 24 | ffvelcdmd 5694 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐵‘𝑘) ∈ ℂ) |
26 | | simplr 528 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑧 ∈ ℂ) |
27 | 26, 24 | expcld 10744 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧↑𝑘) ∈ ℂ) |
28 | 25, 27 | mulcld 8040 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
29 | 20, 28 | fsumcl 11543 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
30 | | plyaddlem.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
31 | | plyaddlem.g |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
32 | 2, 16, 29, 30, 31 | offval2 6146 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) |
33 | | fveq2 5554 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝐵‘𝑚) = (𝐵‘𝑛)) |
34 | | oveq2 5926 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑧↑𝑚) = (𝑧↑𝑛)) |
35 | 33, 34 | oveq12d 5936 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝐵‘𝑚) · (𝑧↑𝑚)) = ((𝐵‘𝑛) · (𝑧↑𝑛))) |
36 | 35 | oveq2d 5934 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑚) · (𝑧↑𝑚))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
37 | | fveq2 5554 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 − 𝑘) → (𝐵‘𝑚) = (𝐵‘(𝑛 − 𝑘))) |
38 | | oveq2 5926 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 − 𝑘) → (𝑧↑𝑚) = (𝑧↑(𝑛 − 𝑘))) |
39 | 37, 38 | oveq12d 5936 |
. . . . . . 7
⊢ (𝑚 = (𝑛 − 𝑘) → ((𝐵‘𝑚) · (𝑧↑𝑚)) = ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) |
40 | 39 | oveq2d 5934 |
. . . . . 6
⊢ (𝑚 = (𝑛 − 𝑘) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑚) · (𝑧↑𝑚))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) |
41 | | elfznn0 10180 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0) |
42 | 8 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
43 | 42 | ffvelcdmda 5693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
44 | | expcl 10628 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
45 | 44 | adantll 476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
46 | 43, 45 | mulcld 8040 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
47 | 41, 46 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
48 | | elfznn0 10180 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)) → 𝑛 ∈ ℕ0) |
49 | 21 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ) |
50 | 49 | ffvelcdmda 5693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → (𝐵‘𝑛) ∈ ℂ) |
51 | | expcl 10628 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝑧↑𝑛) ∈
ℂ) |
52 | 51 | adantll 476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → (𝑧↑𝑛) ∈ ℂ) |
53 | 50, 52 | mulcld 8040 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
54 | 48, 53 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
55 | 47, 54 | anim12dan 600 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ ∧ ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ)) |
56 | | mulcl 7999 |
. . . . . . 7
⊢ ((((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ ∧ ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
57 | 55, 56 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
58 | 5, 18 | zaddcld 9443 |
. . . . . . 7
⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) |
59 | 58 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝑀 + 𝑁) ∈ ℤ) |
60 | 36, 40, 57, 59 | fisum0diag2 11590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...(𝑀 + 𝑁))Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) |
61 | 4 | nn0cnd 9295 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℂ) |
62 | 61 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑀 ∈ ℂ) |
63 | 17 | nn0cnd 9295 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) |
64 | 63 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℂ) |
65 | 11 | nn0cnd 9295 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ) |
66 | 62, 64, 65 | addsubd 8351 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) = ((𝑀 − 𝑘) + 𝑁)) |
67 | | fznn0sub 10123 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝑀) → (𝑀 − 𝑘) ∈
ℕ0) |
68 | 67 | adantl 277 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑀 − 𝑘) ∈
ℕ0) |
69 | | nn0uz 9627 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
70 | 68, 69 | eleqtrdi 2286 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑀 − 𝑘) ∈
(ℤ≥‘0)) |
71 | 18 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℤ) |
72 | | eluzadd 9621 |
. . . . . . . . . . . 12
⊢ (((𝑀 − 𝑘) ∈ (ℤ≥‘0)
∧ 𝑁 ∈ ℤ)
→ ((𝑀 − 𝑘) + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) |
73 | 70, 71, 72 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 − 𝑘) + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) |
74 | 66, 73 | eqeltrd 2270 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘(0 +
𝑁))) |
75 | 64 | addlidd 8169 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0 + 𝑁) = 𝑁) |
76 | 75 | fveq2d 5558 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (ℤ≥‘(0 +
𝑁)) =
(ℤ≥‘𝑁)) |
77 | 74, 76 | eleqtrd 2272 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘𝑁)) |
78 | | fzss2 10130 |
. . . . . . . . 9
⊢ (((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...((𝑀 + 𝑁) − 𝑘))) |
79 | 77, 78 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0...𝑁) ⊆ (0...((𝑀 + 𝑁) − 𝑘))) |
80 | 10, 46 | sylan2 286 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
81 | 80 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
82 | | elfznn0 10180 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℕ0) |
83 | 82, 53 | sylan2 286 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
84 | 83 | adantlr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
85 | 81, 84 | mulcld 8040 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
86 | | eldifn 3282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → ¬ 𝑛 ∈ (0...𝑁)) |
87 | 86 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ¬ 𝑛 ∈ (0...𝑁)) |
88 | | eldifi 3281 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) |
89 | 88, 48 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → 𝑛 ∈ ℕ0) |
90 | 89 | adantl 277 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ ℕ0) |
91 | | peano2nn0 9280 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
92 | 17, 91 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
93 | 92, 69 | eleqtrdi 2286 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘0)) |
94 | | uzsplit 10158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
95 | 93, 94 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1)))) |
96 | 69, 95 | eqtrid 2238 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ℕ0 =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
97 | | ax-1cn 7965 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℂ |
98 | | pncan 8225 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
99 | 63, 97, 98 | sylancl 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
100 | 99 | oveq2d 5934 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
101 | 100 | uneq1d 3312 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
102 | 96, 101 | eqtrd 2226 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ℕ0 =
((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) |
103 | 102 | ad3antrrr 492 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ℕ0 = ((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) |
104 | 90, 103 | eleqtrd 2272 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
105 | | elun 3300 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) ↔ (𝑛 ∈ (0...𝑁) ∨ 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) |
106 | 104, 105 | sylib 122 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑛 ∈ (0...𝑁) ∨ 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) |
107 | 106 | ord 725 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (¬ 𝑛 ∈ (0...𝑁) → 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) |
108 | 87, 107 | mpd 13 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) |
109 | 21 | ffund 5407 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Fun 𝐵) |
110 | | ssun2 3323 |
. . . . . . . . . . . . . . . . . . 19
⊢
(ℤ≥‘(𝑁 + 1)) ⊆ ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) |
111 | 110, 96 | sseqtrrid 3230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆
ℕ0) |
112 | 21 | fdmd 5410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom 𝐵 = ℕ0) |
113 | 111, 112 | sseqtrrd 3218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) |
114 | | funfvima2 5791 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝐵 ∧
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
115 | 109, 113,
114 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
116 | 115 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
117 | 108, 116 | mpd 13 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1)))) |
118 | | plyaddlem.b2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
119 | 118 | ad3antrrr 492 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
120 | 117, 119 | eleqtrd 2272 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) ∈ {0}) |
121 | | elsni 3636 |
. . . . . . . . . . . . 13
⊢ ((𝐵‘𝑛) ∈ {0} → (𝐵‘𝑛) = 0) |
122 | 120, 121 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) = 0) |
123 | 122 | oveq1d 5933 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) = (0 · (𝑧↑𝑛))) |
124 | 13, 89, 51 | syl2an 289 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑧↑𝑛) ∈ ℂ) |
125 | 124 | mul02d 8411 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (0 · (𝑧↑𝑛)) = 0) |
126 | 123, 125 | eqtrd 2226 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) = 0) |
127 | 126 | oveq2d 5934 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · 0)) |
128 | 80 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
129 | 128 | mul01d 8412 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · 0) = 0) |
130 | 127, 129 | eqtrd 2226 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) |
131 | | elfzelz 10091 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘)) → 𝑗 ∈ ℤ) |
132 | 131 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → 𝑗 ∈ ℤ) |
133 | | 0zd 9329 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → 0 ∈ ℤ) |
134 | 71 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → 𝑁 ∈ ℤ) |
135 | | fzdcel 10106 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑁 ∈
ℤ) → DECID 𝑗 ∈ (0...𝑁)) |
136 | 132, 133,
134, 135 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → DECID 𝑗 ∈ (0...𝑁)) |
137 | 136 | ralrimiva 2567 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ∀𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))DECID 𝑗 ∈ (0...𝑁)) |
138 | | 0zd 9329 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 0 ∈ ℤ) |
139 | 59 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑀 + 𝑁) ∈ ℤ) |
140 | 11 | nn0zd 9437 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℤ) |
141 | 139, 140 | zsubcld 9444 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) ∈ ℤ) |
142 | 138, 141 | fzfigd 10502 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) |
143 | 79, 85, 130, 137, 142 | fisumss 11535 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
144 | 143 | sumeq2dv 11511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
145 | | 0zd 9329 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) |
146 | 5 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈ ℤ) |
147 | 145, 146 | fzfigd 10502 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) |
148 | 18 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) |
149 | 145, 148 | fzfigd 10502 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
150 | 147, 149,
80, 83 | fsum2mul 11596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)))) |
151 | 61, 63 | addcomd 8170 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 𝑁) = (𝑁 + 𝑀)) |
152 | 17, 69 | eleqtrdi 2286 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
153 | | eluzadd 9621 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) |
154 | 152, 5, 153 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) |
155 | 61 | addlidd 8169 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 + 𝑀) = 𝑀) |
156 | 155 | fveq2d 5558 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(0 + 𝑀)) = (ℤ≥‘𝑀)) |
157 | 154, 156 | eleqtrd 2272 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 𝑀) ∈ (ℤ≥‘𝑀)) |
158 | 151, 157 | eqeltrd 2270 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘𝑀)) |
159 | | fzss2 10130 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑀) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
160 | 158, 159 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
161 | 160 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
162 | 80 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
163 | 54 | adantlr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
164 | 162, 163 | mulcld 8040 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
165 | 142, 164 | fsumcl 11543 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
166 | | eldifn 3282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀)) |
167 | 166 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀)) |
168 | | eldifi 3281 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
169 | 168, 41 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0) |
170 | 169 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ ℕ0) |
171 | | peano2nn0 9280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ0) |
172 | 4, 171 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
173 | 172, 69 | eleqtrdi 2286 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑀 + 1) ∈
(ℤ≥‘0)) |
174 | | uzsplit 10158 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑀 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) |
175 | 173, 174 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1)))) |
176 | 69, 175 | eqtrid 2238 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ℕ0 =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) |
177 | | pncan 8225 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 1)
− 1) = 𝑀) |
178 | 61, 97, 177 | sylancl 413 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
179 | 178 | oveq2d 5934 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (0...((𝑀 + 1) − 1)) = (0...𝑀)) |
180 | 179 | uneq1d 3312 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) = ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
181 | 176, 180 | eqtrd 2226 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ℕ0 =
((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
182 | 181 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ℕ0 = ((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
183 | 170, 182 | eleqtrd 2272 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
184 | | elun 3300 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) ↔ (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
185 | 183, 184 | sylib 122 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
186 | 185 | ord 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
187 | 167, 186 | mpd 13 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1))) |
188 | 8 | ffund 5407 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Fun 𝐴) |
189 | | ssun2 3323 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤ≥‘(𝑀 + 1)) ⊆ ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) |
190 | 189, 176 | sseqtrrid 3230 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆
ℕ0) |
191 | 8 | fdmd 5410 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐴 = ℕ0) |
192 | 190, 191 | sseqtrrd 3218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) |
193 | | funfvima2 5791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐴 ∧
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
194 | 188, 192,
193 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
195 | 194 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
196 | 187, 195 | mpd 13 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1)))) |
197 | | plyaddlem.a2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
198 | 197 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
199 | 196, 198 | eleqtrd 2272 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ {0}) |
200 | | elsni 3636 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴‘𝑘) ∈ {0} → (𝐴‘𝑘) = 0) |
201 | 199, 200 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) = 0) |
202 | 201 | oveq1d 5933 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
203 | 169, 45 | sylan2 286 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑧↑𝑘) ∈ ℂ) |
204 | 203 | mul02d 8411 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0 · (𝑧↑𝑘)) = 0) |
205 | 202, 204 | eqtrd 2226 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
206 | 205 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
207 | 206 | oveq1d 5933 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (0 · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
208 | 54 | adantlr 477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
209 | 208 | mul02d 8411 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (0 · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) |
210 | 207, 209 | eqtrd 2226 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) |
211 | 210 | sumeq2dv 11511 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0) |
212 | | 0zd 9329 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 0 ∈
ℤ) |
213 | 59 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑀 + 𝑁) ∈ ℤ) |
214 | 170 | nn0zd 9437 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ ℤ) |
215 | 213, 214 | zsubcld 9444 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝑀 + 𝑁) − 𝑘) ∈ ℤ) |
216 | 212, 215 | fzfigd 10502 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) |
217 | 216 | olcd 735 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((0 ∈ ℤ ∧
(0...((𝑀 + 𝑁) − 𝑘)) ⊆ (ℤ≥‘0)
∧ ∀𝑗 ∈
(ℤ≥‘0)DECID 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) ∨ (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin)) |
218 | | isumz 11532 |
. . . . . . . . 9
⊢ (((0
∈ ℤ ∧ (0...((𝑀 + 𝑁) − 𝑘)) ⊆ (ℤ≥‘0)
∧ ∀𝑗 ∈
(ℤ≥‘0)DECID 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) ∨ (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0 = 0) |
219 | 217, 218 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0 = 0) |
220 | 211, 219 | eqtrd 2226 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) |
221 | | elfzelz 10091 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ) |
222 | 221 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝑗 ∈ ℤ) |
223 | | 0zd 9329 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → 0 ∈
ℤ) |
224 | 146 | adantr 276 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝑀 ∈ ℤ) |
225 | | fzdcel 10106 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → DECID 𝑗 ∈ (0...𝑀)) |
226 | 222, 223,
224, 225 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → DECID 𝑗 ∈ (0...𝑀)) |
227 | 226 | ralrimiva 2567 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...(𝑀 + 𝑁))DECID 𝑗 ∈ (0...𝑀)) |
228 | 146, 148 | zaddcld 9443 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝑀 + 𝑁) ∈ ℤ) |
229 | 145, 228 | fzfigd 10502 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...(𝑀 + 𝑁)) ∈ Fin) |
230 | 161, 165,
220, 227, 229 | fisumss 11535 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
231 | 144, 150,
230 | 3eqtr3d 2234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
232 | | 0zd 9329 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 0 ∈
ℤ) |
233 | | elfzelz 10091 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...(𝑀 + 𝑁)) → 𝑛 ∈ ℤ) |
234 | 233 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝑛 ∈ ℤ) |
235 | 232, 234 | fzfigd 10502 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (0...𝑛) ∈ Fin) |
236 | | elfznn0 10180 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...(𝑀 + 𝑁)) → 𝑛 ∈ ℕ0) |
237 | 236, 52 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (𝑧↑𝑛) ∈ ℂ) |
238 | | simpll 527 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝜑) |
239 | | elfznn0 10180 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
240 | 8 | ffvelcdmda 5693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
241 | 238, 239,
240 | syl2an 289 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴‘𝑘) ∈ ℂ) |
242 | | fznn0sub 10123 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
243 | 21 | ffvelcdmda 5693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝐵‘(𝑛 − 𝑘)) ∈ ℂ) |
244 | 238, 242,
243 | syl2an 289 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛 − 𝑘)) ∈ ℂ) |
245 | 241, 244 | mulcld 8040 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ ℂ) |
246 | 235, 237,
245 | fsummulc1 11592 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) |
247 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝑧 ∈ ℂ) |
248 | 247, 239,
44 | syl2an 289 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑𝑘) ∈ ℂ) |
249 | | expcl 10628 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝑧↑(𝑛 − 𝑘)) ∈ ℂ) |
250 | 247, 242,
249 | syl2an 289 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑛 − 𝑘)) ∈ ℂ) |
251 | 241, 248,
244, 250 | mul4d 8174 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘))))) |
252 | 247 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑧 ∈ ℂ) |
253 | 242 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑛 − 𝑘) ∈
ℕ0) |
254 | 239 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
255 | 252, 253,
254 | expaddd 10746 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑘 + (𝑛 − 𝑘))) = ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘)))) |
256 | 254 | nn0cnd 9295 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℂ) |
257 | 236 | ad2antlr 489 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑛 ∈ ℕ0) |
258 | 257 | nn0cnd 9295 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑛 ∈ ℂ) |
259 | 256, 258 | pncan3d 8333 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 + (𝑛 − 𝑘)) = 𝑛) |
260 | 259 | oveq2d 5934 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑘 + (𝑛 − 𝑘))) = (𝑧↑𝑛)) |
261 | 255, 260 | eqtr3d 2228 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘))) = (𝑧↑𝑛)) |
262 | 261 | oveq2d 5934 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) |
263 | 251, 262 | eqtrd 2226 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) |
264 | 263 | sumeq2dv 11511 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) |
265 | 246, 264 | eqtr4d 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) |
266 | 265 | sumeq2dv 11511 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑛 ∈ (0...(𝑀 + 𝑁))Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) |
267 | 60, 231, 266 | 3eqtr4rd 2237 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)))) |
268 | | fveq2 5554 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐵‘𝑛) = (𝐵‘𝑘)) |
269 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝑧↑𝑛) = (𝑧↑𝑘)) |
270 | 268, 269 | oveq12d 5936 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((𝐵‘𝑛) · (𝑧↑𝑛)) = ((𝐵‘𝑘) · (𝑧↑𝑘))) |
271 | 270 | cbvsumv 11504 |
. . . . 5
⊢
Σ𝑛 ∈
(0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) |
272 | 271 | oveq2i 5929 |
. . . 4
⊢
(Σ𝑘 ∈
(0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛))) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) |
273 | 267, 272 | eqtrdi 2242 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
274 | 273 | mpteq2dva 4119 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) |
275 | 32, 274 | eqtr4d 2229 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |