| Step | Hyp | Ref
 | Expression | 
| 1 |   | cnex 8003 | 
. . . 4
⊢ ℂ
∈ V | 
| 2 | 1 | a1i 9 | 
. . 3
⊢ (𝜑 → ℂ ∈
V) | 
| 3 |   | 0zd 9338 | 
. . . . . 6
⊢ (𝜑 → 0 ∈
ℤ) | 
| 4 |   | plyaddlem.m | 
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) | 
| 5 | 4 | nn0zd 9446 | 
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 6 | 3, 5 | fzfigd 10523 | 
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ Fin) | 
| 7 | 6 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) | 
| 8 |   | plyaddlem.a | 
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 9 | 8 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℂ) | 
| 10 |   | elfznn0 10189 | 
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) | 
| 11 | 10 | adantl 277 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) | 
| 12 | 9, 11 | ffvelcdmd 5698 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝐴‘𝑘) ∈ ℂ) | 
| 13 |   | simplr 528 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑧 ∈ ℂ) | 
| 14 | 13, 11 | expcld 10765 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑧↑𝑘) ∈ ℂ) | 
| 15 | 12, 14 | mulcld 8047 | 
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 16 | 7, 15 | fsumcl 11565 | 
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 17 |   | plyaddlem.n | 
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 18 | 17 | nn0zd 9446 | 
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 19 | 3, 18 | fzfigd 10523 | 
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ Fin) | 
| 20 | 19 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) | 
| 21 |   | plyaddlem.b | 
. . . . . . 7
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) | 
| 22 | 21 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐵:ℕ0⟶ℂ) | 
| 23 |   | elfznn0 10189 | 
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | 
| 24 | 23 | adantl 277 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) | 
| 25 | 22, 24 | ffvelcdmd 5698 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐵‘𝑘) ∈ ℂ) | 
| 26 |   | simplr 528 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑧 ∈ ℂ) | 
| 27 | 26, 24 | expcld 10765 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧↑𝑘) ∈ ℂ) | 
| 28 | 25, 27 | mulcld 8047 | 
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 29 | 20, 28 | fsumcl 11565 | 
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 30 |   | plyaddlem.f | 
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 31 |   | plyaddlem.g | 
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) | 
| 32 | 2, 16, 29, 30, 31 | offval2 6151 | 
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) | 
| 33 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝐵‘𝑚) = (𝐵‘𝑛)) | 
| 34 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑧↑𝑚) = (𝑧↑𝑛)) | 
| 35 | 33, 34 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝐵‘𝑚) · (𝑧↑𝑚)) = ((𝐵‘𝑛) · (𝑧↑𝑛))) | 
| 36 | 35 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑚 = 𝑛 → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑚) · (𝑧↑𝑚))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) | 
| 37 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑚 = (𝑛 − 𝑘) → (𝐵‘𝑚) = (𝐵‘(𝑛 − 𝑘))) | 
| 38 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑚 = (𝑛 − 𝑘) → (𝑧↑𝑚) = (𝑧↑(𝑛 − 𝑘))) | 
| 39 | 37, 38 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑚 = (𝑛 − 𝑘) → ((𝐵‘𝑚) · (𝑧↑𝑚)) = ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) | 
| 40 | 39 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑚 = (𝑛 − 𝑘) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑚) · (𝑧↑𝑚))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) | 
| 41 |   | elfznn0 10189 | 
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0) | 
| 42 | 8 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) | 
| 43 | 42 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | 
| 44 |   | expcl 10649 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) | 
| 45 | 44 | adantll 476 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) | 
| 46 | 43, 45 | mulcld 8047 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 47 | 41, 46 | sylan2 286 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 48 |   | elfznn0 10189 | 
. . . . . . . . 9
⊢ (𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)) → 𝑛 ∈ ℕ0) | 
| 49 | 21 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ) | 
| 50 | 49 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → (𝐵‘𝑛) ∈ ℂ) | 
| 51 |   | expcl 10649 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝑧↑𝑛) ∈
ℂ) | 
| 52 | 51 | adantll 476 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → (𝑧↑𝑛) ∈ ℂ) | 
| 53 | 50, 52 | mulcld 8047 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) | 
| 54 | 48, 53 | sylan2 286 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) | 
| 55 | 47, 54 | anim12dan 600 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ ∧ ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ)) | 
| 56 |   | mulcl 8006 | 
. . . . . . 7
⊢ ((((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ ∧ ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) | 
| 57 | 55, 56 | syl 14 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) | 
| 58 | 5, 18 | zaddcld 9452 | 
. . . . . . 7
⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) | 
| 59 | 58 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝑀 + 𝑁) ∈ ℤ) | 
| 60 | 36, 40, 57, 59 | fisum0diag2 11612 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...(𝑀 + 𝑁))Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) | 
| 61 | 4 | nn0cnd 9304 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 62 | 61 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑀 ∈ ℂ) | 
| 63 | 17 | nn0cnd 9304 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 64 | 63 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℂ) | 
| 65 | 11 | nn0cnd 9304 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ) | 
| 66 | 62, 64, 65 | addsubd 8358 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) = ((𝑀 − 𝑘) + 𝑁)) | 
| 67 |   | fznn0sub 10132 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝑀) → (𝑀 − 𝑘) ∈
ℕ0) | 
| 68 | 67 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑀 − 𝑘) ∈
ℕ0) | 
| 69 |   | nn0uz 9636 | 
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) | 
| 70 | 68, 69 | eleqtrdi 2289 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑀 − 𝑘) ∈
(ℤ≥‘0)) | 
| 71 | 18 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℤ) | 
| 72 |   | eluzadd 9630 | 
. . . . . . . . . . . 12
⊢ (((𝑀 − 𝑘) ∈ (ℤ≥‘0)
∧ 𝑁 ∈ ℤ)
→ ((𝑀 − 𝑘) + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) | 
| 73 | 70, 71, 72 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 − 𝑘) + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) | 
| 74 | 66, 73 | eqeltrd 2273 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘(0 +
𝑁))) | 
| 75 | 64 | addlidd 8176 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0 + 𝑁) = 𝑁) | 
| 76 | 75 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (ℤ≥‘(0 +
𝑁)) =
(ℤ≥‘𝑁)) | 
| 77 | 74, 76 | eleqtrd 2275 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘𝑁)) | 
| 78 |   | fzss2 10139 | 
. . . . . . . . 9
⊢ (((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...((𝑀 + 𝑁) − 𝑘))) | 
| 79 | 77, 78 | syl 14 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0...𝑁) ⊆ (0...((𝑀 + 𝑁) − 𝑘))) | 
| 80 | 10, 46 | sylan2 286 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 81 | 80 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 82 |   | elfznn0 10189 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℕ0) | 
| 83 | 82, 53 | sylan2 286 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) | 
| 84 | 83 | adantlr 477 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) | 
| 85 | 81, 84 | mulcld 8047 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) | 
| 86 |   | eldifn 3286 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → ¬ 𝑛 ∈ (0...𝑁)) | 
| 87 | 86 | adantl 277 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ¬ 𝑛 ∈ (0...𝑁)) | 
| 88 |   | eldifi 3285 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) | 
| 89 | 88, 48 | syl 14 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → 𝑛 ∈ ℕ0) | 
| 90 | 89 | adantl 277 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ ℕ0) | 
| 91 |   | peano2nn0 9289 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) | 
| 92 | 17, 91 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) | 
| 93 | 92, 69 | eleqtrdi 2289 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘0)) | 
| 94 |   | uzsplit 10167 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) | 
| 95 | 93, 94 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1)))) | 
| 96 | 69, 95 | eqtrid 2241 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ℕ0 =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) | 
| 97 |   | ax-1cn 7972 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℂ | 
| 98 |   | pncan 8232 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) | 
| 99 | 63, 97, 98 | sylancl 413 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) | 
| 100 | 99 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) | 
| 101 | 100 | uneq1d 3316 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | 
| 102 | 96, 101 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ℕ0 =
((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) | 
| 103 | 102 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ℕ0 = ((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) | 
| 104 | 90, 103 | eleqtrd 2275 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | 
| 105 |   | elun 3304 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) ↔ (𝑛 ∈ (0...𝑁) ∨ 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) | 
| 106 | 104, 105 | sylib 122 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑛 ∈ (0...𝑁) ∨ 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) | 
| 107 | 106 | ord 725 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (¬ 𝑛 ∈ (0...𝑁) → 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) | 
| 108 | 87, 107 | mpd 13 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) | 
| 109 | 21 | ffund 5411 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Fun 𝐵) | 
| 110 |   | ssun2 3327 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(ℤ≥‘(𝑁 + 1)) ⊆ ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) | 
| 111 | 110, 96 | sseqtrrid 3234 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆
ℕ0) | 
| 112 | 21 | fdmd 5414 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom 𝐵 = ℕ0) | 
| 113 | 111, 112 | sseqtrrd 3222 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) | 
| 114 |   | funfvima2 5795 | 
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝐵 ∧
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) | 
| 115 | 109, 113,
114 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) | 
| 116 | 115 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) | 
| 117 | 108, 116 | mpd 13 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1)))) | 
| 118 |   | plyaddlem.b2 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) | 
| 119 | 118 | ad3antrrr 492 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) | 
| 120 | 117, 119 | eleqtrd 2275 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) ∈ {0}) | 
| 121 |   | elsni 3640 | 
. . . . . . . . . . . . 13
⊢ ((𝐵‘𝑛) ∈ {0} → (𝐵‘𝑛) = 0) | 
| 122 | 120, 121 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) = 0) | 
| 123 | 122 | oveq1d 5937 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) = (0 · (𝑧↑𝑛))) | 
| 124 | 13, 89, 51 | syl2an 289 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑧↑𝑛) ∈ ℂ) | 
| 125 | 124 | mul02d 8418 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (0 · (𝑧↑𝑛)) = 0) | 
| 126 | 123, 125 | eqtrd 2229 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) = 0) | 
| 127 | 126 | oveq2d 5938 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · 0)) | 
| 128 | 80 | adantr 276 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 129 | 128 | mul01d 8419 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · 0) = 0) | 
| 130 | 127, 129 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) | 
| 131 |   | elfzelz 10100 | 
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘)) → 𝑗 ∈ ℤ) | 
| 132 | 131 | adantl 277 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → 𝑗 ∈ ℤ) | 
| 133 |   | 0zd 9338 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → 0 ∈ ℤ) | 
| 134 | 71 | adantr 276 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → 𝑁 ∈ ℤ) | 
| 135 |   | fzdcel 10115 | 
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑁 ∈
ℤ) → DECID 𝑗 ∈ (0...𝑁)) | 
| 136 | 132, 133,
134, 135 | syl3anc 1249 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → DECID 𝑗 ∈ (0...𝑁)) | 
| 137 | 136 | ralrimiva 2570 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ∀𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))DECID 𝑗 ∈ (0...𝑁)) | 
| 138 |   | 0zd 9338 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 0 ∈ ℤ) | 
| 139 | 59 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑀 + 𝑁) ∈ ℤ) | 
| 140 | 11 | nn0zd 9446 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℤ) | 
| 141 | 139, 140 | zsubcld 9453 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) ∈ ℤ) | 
| 142 | 138, 141 | fzfigd 10523 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) | 
| 143 | 79, 85, 130, 137, 142 | fisumss 11557 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) | 
| 144 | 143 | sumeq2dv 11533 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) | 
| 145 |   | 0zd 9338 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) | 
| 146 | 5 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈ ℤ) | 
| 147 | 145, 146 | fzfigd 10523 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) | 
| 148 | 18 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) | 
| 149 | 145, 148 | fzfigd 10523 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) | 
| 150 | 147, 149,
80, 83 | fsum2mul 11618 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)))) | 
| 151 | 61, 63 | addcomd 8177 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 𝑁) = (𝑁 + 𝑀)) | 
| 152 | 17, 69 | eleqtrdi 2289 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) | 
| 153 |   | eluzadd 9630 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) | 
| 154 | 152, 5, 153 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) | 
| 155 | 61 | addlidd 8176 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (0 + 𝑀) = 𝑀) | 
| 156 | 155 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(0 + 𝑀)) = (ℤ≥‘𝑀)) | 
| 157 | 154, 156 | eleqtrd 2275 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 𝑀) ∈ (ℤ≥‘𝑀)) | 
| 158 | 151, 157 | eqeltrd 2273 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘𝑀)) | 
| 159 |   | fzss2 10139 | 
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑀) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) | 
| 160 | 158, 159 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) | 
| 161 | 160 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) | 
| 162 | 80 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 163 | 54 | adantlr 477 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) | 
| 164 | 162, 163 | mulcld 8047 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) | 
| 165 | 142, 164 | fsumcl 11565 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) | 
| 166 |   | eldifn 3286 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀)) | 
| 167 | 166 | adantl 277 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀)) | 
| 168 |   | eldifi 3285 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) | 
| 169 | 168, 41 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0) | 
| 170 | 169 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ ℕ0) | 
| 171 |   | peano2nn0 9289 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ0) | 
| 172 | 4, 171 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) | 
| 173 | 172, 69 | eleqtrdi 2289 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑀 + 1) ∈
(ℤ≥‘0)) | 
| 174 |   | uzsplit 10167 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑀 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) | 
| 175 | 173, 174 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1)))) | 
| 176 | 69, 175 | eqtrid 2241 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ℕ0 =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) | 
| 177 |   | pncan 8232 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 1)
− 1) = 𝑀) | 
| 178 | 61, 97, 177 | sylancl 413 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) | 
| 179 | 178 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (0...((𝑀 + 1) − 1)) = (0...𝑀)) | 
| 180 | 179 | uneq1d 3316 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) = ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) | 
| 181 | 176, 180 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ℕ0 =
((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) | 
| 182 | 181 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ℕ0 = ((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) | 
| 183 | 170, 182 | eleqtrd 2275 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) | 
| 184 |   | elun 3304 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) ↔ (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) | 
| 185 | 183, 184 | sylib 122 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) | 
| 186 | 185 | ord 725 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) | 
| 187 | 167, 186 | mpd 13 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1))) | 
| 188 | 8 | ffund 5411 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Fun 𝐴) | 
| 189 |   | ssun2 3327 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤ≥‘(𝑀 + 1)) ⊆ ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) | 
| 190 | 189, 176 | sseqtrrid 3234 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆
ℕ0) | 
| 191 | 8 | fdmd 5414 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐴 = ℕ0) | 
| 192 | 190, 191 | sseqtrrd 3222 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) | 
| 193 |   | funfvima2 5795 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐴 ∧
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) | 
| 194 | 188, 192,
193 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) | 
| 195 | 194 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) | 
| 196 | 187, 195 | mpd 13 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1)))) | 
| 197 |   | plyaddlem.a2 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) | 
| 198 | 197 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) | 
| 199 | 196, 198 | eleqtrd 2275 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ {0}) | 
| 200 |   | elsni 3640 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐴‘𝑘) ∈ {0} → (𝐴‘𝑘) = 0) | 
| 201 | 199, 200 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) = 0) | 
| 202 | 201 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) | 
| 203 | 169, 45 | sylan2 286 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑧↑𝑘) ∈ ℂ) | 
| 204 | 203 | mul02d 8418 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0 · (𝑧↑𝑘)) = 0) | 
| 205 | 202, 204 | eqtrd 2229 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) | 
| 206 | 205 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) | 
| 207 | 206 | oveq1d 5937 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (0 · ((𝐵‘𝑛) · (𝑧↑𝑛)))) | 
| 208 | 54 | adantlr 477 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) | 
| 209 | 208 | mul02d 8418 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (0 · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) | 
| 210 | 207, 209 | eqtrd 2229 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) | 
| 211 | 210 | sumeq2dv 11533 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0) | 
| 212 |   | 0zd 9338 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 0 ∈
ℤ) | 
| 213 | 59 | adantr 276 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑀 + 𝑁) ∈ ℤ) | 
| 214 | 170 | nn0zd 9446 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ ℤ) | 
| 215 | 213, 214 | zsubcld 9453 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝑀 + 𝑁) − 𝑘) ∈ ℤ) | 
| 216 | 212, 215 | fzfigd 10523 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) | 
| 217 | 216 | olcd 735 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((0 ∈ ℤ ∧
(0...((𝑀 + 𝑁) − 𝑘)) ⊆ (ℤ≥‘0)
∧ ∀𝑗 ∈
(ℤ≥‘0)DECID 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) ∨ (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin)) | 
| 218 |   | isumz 11554 | 
. . . . . . . . 9
⊢ (((0
∈ ℤ ∧ (0...((𝑀 + 𝑁) − 𝑘)) ⊆ (ℤ≥‘0)
∧ ∀𝑗 ∈
(ℤ≥‘0)DECID 𝑗 ∈ (0...((𝑀 + 𝑁) − 𝑘))) ∨ (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0 = 0) | 
| 219 | 217, 218 | syl 14 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0 = 0) | 
| 220 | 211, 219 | eqtrd 2229 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) | 
| 221 |   | elfzelz 10100 | 
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ) | 
| 222 | 221 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝑗 ∈ ℤ) | 
| 223 |   | 0zd 9338 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → 0 ∈
ℤ) | 
| 224 | 146 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝑀 ∈ ℤ) | 
| 225 |   | fzdcel 10115 | 
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → DECID 𝑗 ∈ (0...𝑀)) | 
| 226 | 222, 223,
224, 225 | syl3anc 1249 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → DECID 𝑗 ∈ (0...𝑀)) | 
| 227 | 226 | ralrimiva 2570 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...(𝑀 + 𝑁))DECID 𝑗 ∈ (0...𝑀)) | 
| 228 | 146, 148 | zaddcld 9452 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝑀 + 𝑁) ∈ ℤ) | 
| 229 | 145, 228 | fzfigd 10523 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...(𝑀 + 𝑁)) ∈ Fin) | 
| 230 | 161, 165,
220, 227, 229 | fisumss 11557 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) | 
| 231 | 144, 150,
230 | 3eqtr3d 2237 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) | 
| 232 |   | 0zd 9338 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 0 ∈
ℤ) | 
| 233 |   | elfzelz 10100 | 
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...(𝑀 + 𝑁)) → 𝑛 ∈ ℤ) | 
| 234 | 233 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝑛 ∈ ℤ) | 
| 235 | 232, 234 | fzfigd 10523 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (0...𝑛) ∈ Fin) | 
| 236 |   | elfznn0 10189 | 
. . . . . . . . 9
⊢ (𝑛 ∈ (0...(𝑀 + 𝑁)) → 𝑛 ∈ ℕ0) | 
| 237 | 236, 52 | sylan2 286 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (𝑧↑𝑛) ∈ ℂ) | 
| 238 |   | simpll 527 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝜑) | 
| 239 |   | elfznn0 10189 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) | 
| 240 | 8 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | 
| 241 | 238, 239,
240 | syl2an 289 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴‘𝑘) ∈ ℂ) | 
| 242 |   | fznn0sub 10132 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) | 
| 243 | 21 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝐵‘(𝑛 − 𝑘)) ∈ ℂ) | 
| 244 | 238, 242,
243 | syl2an 289 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛 − 𝑘)) ∈ ℂ) | 
| 245 | 241, 244 | mulcld 8047 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ ℂ) | 
| 246 | 235, 237,
245 | fsummulc1 11614 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) | 
| 247 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝑧 ∈ ℂ) | 
| 248 | 247, 239,
44 | syl2an 289 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑𝑘) ∈ ℂ) | 
| 249 |   | expcl 10649 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝑧↑(𝑛 − 𝑘)) ∈ ℂ) | 
| 250 | 247, 242,
249 | syl2an 289 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑛 − 𝑘)) ∈ ℂ) | 
| 251 | 241, 248,
244, 250 | mul4d 8181 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘))))) | 
| 252 | 247 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑧 ∈ ℂ) | 
| 253 | 242 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑛 − 𝑘) ∈
ℕ0) | 
| 254 | 239 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) | 
| 255 | 252, 253,
254 | expaddd 10767 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑘 + (𝑛 − 𝑘))) = ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘)))) | 
| 256 | 254 | nn0cnd 9304 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℂ) | 
| 257 | 236 | ad2antlr 489 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑛 ∈ ℕ0) | 
| 258 | 257 | nn0cnd 9304 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑛 ∈ ℂ) | 
| 259 | 256, 258 | pncan3d 8340 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 + (𝑛 − 𝑘)) = 𝑛) | 
| 260 | 259 | oveq2d 5938 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑘 + (𝑛 − 𝑘))) = (𝑧↑𝑛)) | 
| 261 | 255, 260 | eqtr3d 2231 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘))) = (𝑧↑𝑛)) | 
| 262 | 261 | oveq2d 5938 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) | 
| 263 | 251, 262 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) | 
| 264 | 263 | sumeq2dv 11533 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) | 
| 265 | 246, 264 | eqtr4d 2232 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) | 
| 266 | 265 | sumeq2dv 11533 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑛 ∈ (0...(𝑀 + 𝑁))Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) | 
| 267 | 60, 231, 266 | 3eqtr4rd 2240 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)))) | 
| 268 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐵‘𝑛) = (𝐵‘𝑘)) | 
| 269 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝑧↑𝑛) = (𝑧↑𝑘)) | 
| 270 | 268, 269 | oveq12d 5940 | 
. . . . . 6
⊢ (𝑛 = 𝑘 → ((𝐵‘𝑛) · (𝑧↑𝑛)) = ((𝐵‘𝑘) · (𝑧↑𝑘))) | 
| 271 | 270 | cbvsumv 11526 | 
. . . . 5
⊢
Σ𝑛 ∈
(0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) | 
| 272 | 271 | oveq2i 5933 | 
. . . 4
⊢
(Σ𝑘 ∈
(0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛))) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) | 
| 273 | 267, 272 | eqtrdi 2245 | 
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) | 
| 274 | 273 | mpteq2dva 4123 | 
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) | 
| 275 | 32, 274 | eqtr4d 2232 | 
1
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |