ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem11 GIF version

Theorem 4sqlem11 12724
Description: Lemma for 4sq 12733. Use the pigeonhole principle to show that the sets {𝑚↑2 ∣ 𝑚 ∈ (0...𝑁)} and {-1 − 𝑛↑2 ∣ 𝑛 ∈ (0...𝑁)} have a common element, mod 𝑃. Note that although the conclusion is stated in terms of 𝐴 ∩ ran 𝐹 being nonempty, it is also inhabited by 4sqleminfi 12720 and fin0 6982. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sqlem11.5 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlem11.6 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlem11 (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅)
Distinct variable groups:   𝑣,𝐴   𝑚,𝑁,𝑢   𝑣,𝑃   𝑃,𝑚,𝑢   𝜑,𝑣   𝜑,𝑚,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑛)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑢,𝑚,𝑛)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑚,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem 4sqlem11
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4sq.2 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
2 4sq.4 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
3 prmnn 12432 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
5 4sqlem11.5 . . . . . . 7 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
61, 4, 54sqlemafi 12718 . . . . . 6 (𝜑𝐴 ∈ Fin)
7 4sqlem11.6 . . . . . . 7 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
81, 4, 5, 74sqlemffi 12719 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
91, 4, 5, 74sqleminfi 12720 . . . . . 6 (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin)
10 unfiin 7023 . . . . . 6 ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) ∈ Fin) → (𝐴 ∪ ran 𝐹) ∈ Fin)
116, 8, 9, 10syl3anc 1250 . . . . 5 (𝜑 → (𝐴 ∪ ran 𝐹) ∈ Fin)
12 hashcl 10926 . . . . 5 ((𝐴 ∪ ran 𝐹) ∈ Fin → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℕ0)
1311, 12syl 14 . . . 4 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℕ0)
1413nn0red 9349 . . 3 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℝ)
15 prmz 12433 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
162, 15syl 14 . . . 4 (𝜑𝑃 ∈ ℤ)
1716zred 9495 . . 3 (𝜑𝑃 ∈ ℝ)
18 0zd 9384 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
19 peano2zm 9410 . . . . . . . 8 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
2016, 19syl 14 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℤ)
2118, 20fzfigd 10576 . . . . . 6 (𝜑 → (0...(𝑃 − 1)) ∈ Fin)
22 elfzelz 10147 . . . . . . . . . . . . 13 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
23 zsqcl 10755 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
2422, 23syl 14 . . . . . . . . . . . 12 (𝑚 ∈ (0...𝑁) → (𝑚↑2) ∈ ℤ)
25 zmodfz 10491 . . . . . . . . . . . 12 (((𝑚↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))
2624, 4, 25syl2anr 290 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))
27 eleq1a 2277 . . . . . . . . . . 11 (((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
2826, 27syl 14 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
2928rexlimdva 2623 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
3029abssdv 3267 . . . . . . . 8 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0...(𝑃 − 1)))
315, 30eqsstrid 3239 . . . . . . 7 (𝜑𝐴 ⊆ (0...(𝑃 − 1)))
3220zcnd 9496 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℂ)
3332addlidd 8222 . . . . . . . . . . . 12 (𝜑 → (0 + (𝑃 − 1)) = (𝑃 − 1))
3433oveq1d 5959 . . . . . . . . . . 11 (𝜑 → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣))
3534adantr 276 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣))
3631sselda 3193 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → 𝑣 ∈ (0...(𝑃 − 1)))
37 fzrev3i 10210 . . . . . . . . . . 11 (𝑣 ∈ (0...(𝑃 − 1)) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1)))
3836, 37syl 14 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1)))
3935, 38eqeltrrd 2283 . . . . . . . . 9 ((𝜑𝑣𝐴) → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1)))
4039, 7fmptd 5734 . . . . . . . 8 (𝜑𝐹:𝐴⟶(0...(𝑃 − 1)))
4140frnd 5435 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (0...(𝑃 − 1)))
4231, 41unssd 3349 . . . . . 6 (𝜑 → (𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1)))
43 ssdomg 6870 . . . . . 6 ((0...(𝑃 − 1)) ∈ Fin → ((𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1)) → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
4421, 42, 43sylc 62 . . . . 5 (𝜑 → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))
45 fihashdom 10948 . . . . . 6 (((𝐴 ∪ ran 𝐹) ∈ Fin ∧ (0...(𝑃 − 1)) ∈ Fin) → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
4611, 21, 45syl2anc 411 . . . . 5 (𝜑 → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
4744, 46mpbird 167 . . . 4 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))))
48 fz01en 10175 . . . . . . 7 (𝑃 ∈ ℤ → (0...(𝑃 − 1)) ≈ (1...𝑃))
4916, 48syl 14 . . . . . 6 (𝜑 → (0...(𝑃 − 1)) ≈ (1...𝑃))
50 1zzd 9399 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
5150, 16fzfigd 10576 . . . . . . 7 (𝜑 → (1...𝑃) ∈ Fin)
52 hashen 10929 . . . . . . 7 (((0...(𝑃 − 1)) ∈ Fin ∧ (1...𝑃) ∈ Fin) → ((♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃)))
5321, 51, 52syl2anc 411 . . . . . 6 (𝜑 → ((♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃)))
5449, 53mpbird 167 . . . . 5 (𝜑 → (♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)))
554nnnn0d 9348 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
56 hashfz1 10928 . . . . . 6 (𝑃 ∈ ℕ0 → (♯‘(1...𝑃)) = 𝑃)
5755, 56syl 14 . . . . 5 (𝜑 → (♯‘(1...𝑃)) = 𝑃)
5854, 57eqtrd 2238 . . . 4 (𝜑 → (♯‘(0...(𝑃 − 1))) = 𝑃)
5947, 58breqtrd 4070 . . 3 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ 𝑃)
6014, 17, 59lensymd 8194 . 2 (𝜑 → ¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))
6117adantr 276 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 ∈ ℝ)
6261ltp1d 9003 . . . . 5 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (𝑃 + 1))
631nncnd 9050 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
64 1cnd 8088 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
6563, 63, 64, 64add4d 8241 . . . . . . . 8 (𝜑 → ((𝑁 + 𝑁) + (1 + 1)) = ((𝑁 + 1) + (𝑁 + 1)))
66 4sq.3 . . . . . . . . . 10 (𝜑𝑃 = ((2 · 𝑁) + 1))
6766oveq1d 5959 . . . . . . . . 9 (𝜑 → (𝑃 + 1) = (((2 · 𝑁) + 1) + 1))
68 2cn 9107 . . . . . . . . . . 11 2 ∈ ℂ
69 mulcl 8052 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) ∈ ℂ)
7068, 63, 69sylancr 414 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
7170, 64, 64addassd 8095 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
72632timesd 9280 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
7372oveq1d 5959 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) + (1 + 1)) = ((𝑁 + 𝑁) + (1 + 1)))
7467, 71, 733eqtrd 2242 . . . . . . . 8 (𝜑 → (𝑃 + 1) = ((𝑁 + 𝑁) + (1 + 1)))
751nnzd 9494 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
7618, 75fzfigd 10576 . . . . . . . . . . . . . 14 (𝜑 → (0...𝑁) ∈ Fin)
7726ex 115 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑚 ∈ (0...𝑁) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))))
784adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℕ)
7922ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℤ)
8079, 23syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚↑2) ∈ ℤ)
81 elfzelz 10147 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 ∈ (0...𝑁) → 𝑢 ∈ ℤ)
8281ad2antll 491 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℤ)
83 zsqcl 10755 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ ℤ → (𝑢↑2) ∈ ℤ)
8482, 83syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢↑2) ∈ ℤ)
85 moddvds 12110 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧ (𝑢↑2) ∈ ℤ) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2))))
8678, 80, 84, 85syl3anc 1250 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2))))
8779zcnd 9496 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℂ)
8882zcnd 9496 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℂ)
89 subsq 10791 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚𝑢)))
9087, 88, 89syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚𝑢)))
9190breq2d 4056 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚↑2) − (𝑢↑2)) ↔ 𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢))))
922adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℙ)
9379, 82zaddcld 9499 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℤ)
9479, 82zsubcld 9500 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢) ∈ ℤ)
95 euclemma 12468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℙ ∧ (𝑚 + 𝑢) ∈ ℤ ∧ (𝑚𝑢) ∈ ℤ) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
9692, 93, 94, 95syl3anc 1250 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
9786, 91, 963bitrd 214 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
98 zdceq 9448 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑢 ∈ ℤ) → DECID 𝑚 = 𝑢)
9979, 82, 98syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → DECID 𝑚 = 𝑢)
10093zred 9495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℝ)
101 2re 9106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 ∈ ℝ
1021nnred 9049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑁 ∈ ℝ)
103 remulcl 8053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
104101, 102, 103sylancr 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (2 · 𝑁) ∈ ℝ)
105104adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) ∈ ℝ)
10692, 15syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℤ)
107106zred 9495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℝ)
10879zred 9495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℝ)
10982zred 9495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℝ)
110102adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℝ)
111 elfzle2 10150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (0...𝑁) → 𝑚𝑁)
112111ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚𝑁)
113 elfzle2 10150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑢 ∈ (0...𝑁) → 𝑢𝑁)
114113ad2antll 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢𝑁)
115108, 109, 110, 110, 112, 114le2addd 8636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (𝑁 + 𝑁))
11663adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℂ)
1171162timesd 9280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) = (𝑁 + 𝑁))
118115, 117breqtrrd 4072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (2 · 𝑁))
119104ltp1d 9003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (2 · 𝑁) < ((2 · 𝑁) + 1))
120119, 66breqtrrd 4072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (2 · 𝑁) < 𝑃)
121120adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) < 𝑃)
122100, 105, 107, 118, 121lelttrd 8197 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) < 𝑃)
123 zltnle 9418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑚 + 𝑢) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢)))
12493, 106, 123syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢)))
125122, 124mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (𝑚 + 𝑢))
126125adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ≤ (𝑚 + 𝑢))
12716ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 𝑃 ∈ ℤ)
12893adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℤ)
129 1red 8087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ∈ ℝ)
130 nn0abscl 11396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚𝑢) ∈ ℤ → (abs‘(𝑚𝑢)) ∈ ℕ0)
13194, 130syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ∈ ℕ0)
132131nn0red 9349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ∈ ℝ)
133132adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℝ)
134128zred 9495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℝ)
135131adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℕ0)
136135nn0zd 9493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℤ)
13794zcnd 9496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢) ∈ ℂ)
138137adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚𝑢) ∈ ℂ)
13987, 88subeq0ad 8393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚𝑢) = 0 ↔ 𝑚 = 𝑢))
140139necon3bid 2417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚𝑢) ≠ 0 ↔ 𝑚𝑢))
141140biimpar 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚𝑢) ≠ 0)
142 0zd 9384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 0 ∈ ℤ)
143 zapne 9447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑚𝑢) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑚𝑢) # 0 ↔ (𝑚𝑢) ≠ 0))
14494, 142, 143syl2an2r 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ((𝑚𝑢) # 0 ↔ (𝑚𝑢) ≠ 0))
145141, 144mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚𝑢) # 0)
146138, 145absrpclapd 11499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℝ+)
147146rpgt0d 9821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 0 < (abs‘(𝑚𝑢)))
148 elnnz 9382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((abs‘(𝑚𝑢)) ∈ ℕ ↔ ((abs‘(𝑚𝑢)) ∈ ℤ ∧ 0 < (abs‘(𝑚𝑢))))
149136, 147, 148sylanbrc 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℕ)
150149nnge1d 9079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ≤ (abs‘(𝑚𝑢)))
151 0cnd 8065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ∈ ℂ)
15287, 88, 151abs3difd 11511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ≤ ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))))
15387subid1d 8372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 0) = 𝑚)
154153fveq2d 5580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = (abs‘𝑚))
155 elfzle1 10149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚)
156155ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑚)
157108, 156absidd 11478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑚) = 𝑚)
158154, 157eqtrd 2238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = 𝑚)
159 0cn 8064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 0 ∈ ℂ
160 abssub 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((0 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0)))
161159, 88, 160sylancr 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0)))
16288subid1d 8372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢 − 0) = 𝑢)
163162fveq2d 5580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑢 − 0)) = (abs‘𝑢))
164 elfzle1 10149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑢 ∈ (0...𝑁) → 0 ≤ 𝑢)
165164ad2antll 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑢)
166109, 165absidd 11478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑢) = 𝑢)
167161, 163, 1663eqtrd 2242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = 𝑢)
168158, 167oveq12d 5962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))) = (𝑚 + 𝑢))
169152, 168breqtrd 4070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢))
170169adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢))
171129, 133, 134, 150, 170letrd 8196 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ≤ (𝑚 + 𝑢))
172 elnnz1 9395 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 + 𝑢) ∈ ℕ ↔ ((𝑚 + 𝑢) ∈ ℤ ∧ 1 ≤ (𝑚 + 𝑢)))
173128, 171, 172sylanbrc 417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℕ)
174 dvdsle 12155 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℤ ∧ (𝑚 + 𝑢) ∈ ℕ) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢)))
175127, 173, 174syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢)))
176126, 175mtod 665 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ∥ (𝑚 + 𝑢))
177176ex 115 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢)))
178177a1d 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑚𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢))))
179178necon4addc 2446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢)))
18099, 179mpd 13 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢))
181 dvdsabsb 12121 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℤ ∧ (𝑚𝑢) ∈ ℤ) → (𝑃 ∥ (𝑚𝑢) ↔ 𝑃 ∥ (abs‘(𝑚𝑢))))
182106, 94, 181syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚𝑢) ↔ 𝑃 ∥ (abs‘(𝑚𝑢))))
183 letr 8155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑃 ∈ ℝ ∧ (abs‘(𝑚𝑢)) ∈ ℝ ∧ (𝑚 + 𝑢) ∈ ℝ) → ((𝑃 ≤ (abs‘(𝑚𝑢)) ∧ (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
184107, 132, 100, 183syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ≤ (abs‘(𝑚𝑢)) ∧ (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
185169, 184mpan2d 428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ≤ (abs‘(𝑚𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
186125, 185mtod 665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (abs‘(𝑚𝑢)))
187186adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ≤ (abs‘(𝑚𝑢)))
188 dvdsle 12155 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℤ ∧ (abs‘(𝑚𝑢)) ∈ ℕ) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑃 ≤ (abs‘(𝑚𝑢))))
189106, 149, 188syl2an2r 595 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑃 ≤ (abs‘(𝑚𝑢))))
190187, 189mtod 665 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ∥ (abs‘(𝑚𝑢)))
191190ex 115 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚𝑢))))
192191a1d 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑚𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚𝑢)))))
193192necon4addc 2446 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑚 = 𝑢)))
19499, 193mpd 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑚 = 𝑢))
195182, 194sylbid 150 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚𝑢) → 𝑚 = 𝑢))
196180, 195jaod 719 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢)) → 𝑚 = 𝑢))
19797, 196sylbid 150 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) → 𝑚 = 𝑢))
198 oveq1 5951 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑢 → (𝑚↑2) = (𝑢↑2))
199198oveq1d 5959 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑢 → ((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃))
200197, 199impbid1 142 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢))
201200ex 115 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁)) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢)))
20277, 201dom2lem 6863 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)))
203 f1f1orn 5533 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)) → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
204202, 203syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
205 eqid 2205 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))
206205rnmpt 4926 . . . . . . . . . . . . . . . . 17 ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
2075, 206eqtr4i 2229 . . . . . . . . . . . . . . . 16 𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))
208 f1oeq3 5512 . . . . . . . . . . . . . . . 16 (𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) → ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))))
209207, 208ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
210204, 209sylibr 134 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴)
211 f1oeng 6848 . . . . . . . . . . . . . 14 (((0...𝑁) ∈ Fin ∧ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴) → (0...𝑁) ≈ 𝐴)
21276, 210, 211syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (0...𝑁) ≈ 𝐴)
213212ensymd 6875 . . . . . . . . . . . 12 (𝜑𝐴 ≈ (0...𝑁))
214 ax-1cn 8018 . . . . . . . . . . . . . . 15 1 ∈ ℂ
215 pncan 8278 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
21663, 214, 215sylancl 413 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
217216oveq2d 5960 . . . . . . . . . . . . 13 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
2181nnnn0d 9348 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
219 peano2nn0 9335 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
220218, 219syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℕ0)
221220nn0zd 9493 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℤ)
222 fz01en 10175 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℤ → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1)))
223221, 222syl 14 . . . . . . . . . . . . 13 (𝜑 → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1)))
224217, 223eqbrtrrd 4068 . . . . . . . . . . . 12 (𝜑 → (0...𝑁) ≈ (1...(𝑁 + 1)))
225 entr 6876 . . . . . . . . . . . 12 ((𝐴 ≈ (0...𝑁) ∧ (0...𝑁) ≈ (1...(𝑁 + 1))) → 𝐴 ≈ (1...(𝑁 + 1)))
226213, 224, 225syl2anc 411 . . . . . . . . . . 11 (𝜑𝐴 ≈ (1...(𝑁 + 1)))
22750, 221fzfigd 10576 . . . . . . . . . . . 12 (𝜑 → (1...(𝑁 + 1)) ∈ Fin)
228 hashen 10929 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (1...(𝑁 + 1)) ∈ Fin) → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1))))
2296, 227, 228syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1))))
230226, 229mpbird 167 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = (♯‘(1...(𝑁 + 1))))
231 hashfz1 10928 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
232220, 231syl 14 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
233230, 232eqtrd 2238 . . . . . . . . 9 (𝜑 → (♯‘𝐴) = (𝑁 + 1))
23439ex 115 . . . . . . . . . . . . . 14 (𝜑 → (𝑣𝐴 → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1))))
23532adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → (𝑃 − 1) ∈ ℂ)
236 fzssuz 10187 . . . . . . . . . . . . . . . . . . . 20 (0...(𝑃 − 1)) ⊆ (ℤ‘0)
237 uzssz 9668 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘0) ⊆ ℤ
238 zsscn 9380 . . . . . . . . . . . . . . . . . . . . 21 ℤ ⊆ ℂ
239237, 238sstri 3202 . . . . . . . . . . . . . . . . . . . 20 (ℤ‘0) ⊆ ℂ
240236, 239sstri 3202 . . . . . . . . . . . . . . . . . . 19 (0...(𝑃 − 1)) ⊆ ℂ
24131, 240sstrdi 3205 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℂ)
242241sselda 3193 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
243242adantrr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → 𝑣 ∈ ℂ)
244241sselda 3193 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝑘 ∈ ℂ)
245244adantrl 478 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → 𝑘 ∈ ℂ)
246235, 243, 245subcanad 8426 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘))
247246ex 115 . . . . . . . . . . . . . 14 (𝜑 → ((𝑣𝐴𝑘𝐴) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘)))
248234, 247dom2lem 6863 . . . . . . . . . . . . 13 (𝜑 → (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1)))
249 f1eq1 5476 . . . . . . . . . . . . . 14 (𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)) → (𝐹:𝐴1-1→(0...(𝑃 − 1)) ↔ (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1))))
2507, 249ax-mp 5 . . . . . . . . . . . . 13 (𝐹:𝐴1-1→(0...(𝑃 − 1)) ↔ (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1)))
251248, 250sylibr 134 . . . . . . . . . . . 12 (𝜑𝐹:𝐴1-1→(0...(𝑃 − 1)))
252 f1f1orn 5533 . . . . . . . . . . . 12 (𝐹:𝐴1-1→(0...(𝑃 − 1)) → 𝐹:𝐴1-1-onto→ran 𝐹)
253251, 252syl 14 . . . . . . . . . . 11 (𝜑𝐹:𝐴1-1-onto→ran 𝐹)
2546, 253fihasheqf1od 10934 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = (♯‘ran 𝐹))
255254, 233eqtr3d 2240 . . . . . . . . 9 (𝜑 → (♯‘ran 𝐹) = (𝑁 + 1))
256233, 255oveq12d 5962 . . . . . . . 8 (𝜑 → ((♯‘𝐴) + (♯‘ran 𝐹)) = ((𝑁 + 1) + (𝑁 + 1)))
25765, 74, 2563eqtr4d 2248 . . . . . . 7 (𝜑 → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹)))
258257adantr 276 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹)))
2596adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝐴 ∈ Fin)
2608adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → ran 𝐹 ∈ Fin)
261 simpr 110 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝐴 ∩ ran 𝐹) = ∅)
262 hashun 10950 . . . . . . 7 ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹)))
263259, 260, 261, 262syl3anc 1250 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹)))
264258, 263eqtr4d 2241 . . . . 5 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = (♯‘(𝐴 ∪ ran 𝐹)))
26562, 264breqtrd 4070 . . . 4 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))
266265ex 115 . . 3 (𝜑 → ((𝐴 ∩ ran 𝐹) = ∅ → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))))
267266necon3bd 2419 . 2 (𝜑 → (¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)) → (𝐴 ∩ ran 𝐹) ≠ ∅))
26860, 267mpd 13 1 (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2176  {cab 2191  wne 2376  wrex 2485  cun 3164  cin 3165  wss 3166  c0 3460   class class class wbr 4044  cmpt 4105  ran crn 4676  1-1wf1 5268  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cen 6825  cdom 6826  Fincfn 6827  cc 7923  cr 7924  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930   < clt 8107  cle 8108  cmin 8243   # cap 8654  cn 9036  2c2 9087  0cn0 9295  cz 9372  cuz 9648  ...cfz 10130   mod cmo 10467  cexp 10683  chash 10920  abscabs 11308  cdvds 12098  cprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-2o 6503  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-prm 12430
This theorem is referenced by:  4sqlem12  12725
  Copyright terms: Public domain W3C validator