| Step | Hyp | Ref
 | Expression | 
| 1 |   | 4sq.2 | 
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 2 |   | 4sq.4 | 
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 3 |   | prmnn 12278 | 
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 4 | 2, 3 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℕ) | 
| 5 |   | 4sqlem11.5 | 
. . . . . . 7
⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} | 
| 6 | 1, 4, 5 | 4sqlemafi 12564 | 
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 7 |   | 4sqlem11.6 | 
. . . . . . 7
⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) | 
| 8 | 1, 4, 5, 7 | 4sqlemffi 12565 | 
. . . . . 6
⊢ (𝜑 → ran 𝐹 ∈ Fin) | 
| 9 | 1, 4, 5, 7 | 4sqleminfi 12566 | 
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) | 
| 10 |   | unfiin 6987 | 
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) ∈ Fin) → (𝐴 ∪ ran 𝐹) ∈ Fin) | 
| 11 | 6, 8, 9, 10 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ∈ Fin) | 
| 12 |   | hashcl 10873 | 
. . . . 5
⊢ ((𝐴 ∪ ran 𝐹) ∈ Fin → (♯‘(𝐴 ∪ ran 𝐹)) ∈
ℕ0) | 
| 13 | 11, 12 | syl 14 | 
. . . 4
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈
ℕ0) | 
| 14 | 13 | nn0red 9303 | 
. . 3
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℝ) | 
| 15 |   | prmz 12279 | 
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) | 
| 16 | 2, 15 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℤ) | 
| 17 | 16 | zred 9448 | 
. . 3
⊢ (𝜑 → 𝑃 ∈ ℝ) | 
| 18 |   | 0zd 9338 | 
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) | 
| 19 |   | peano2zm 9364 | 
. . . . . . . 8
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) | 
| 20 | 16, 19 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) | 
| 21 | 18, 20 | fzfigd 10523 | 
. . . . . 6
⊢ (𝜑 → (0...(𝑃 − 1)) ∈ Fin) | 
| 22 |   | elfzelz 10100 | 
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ) | 
| 23 |   | zsqcl 10702 | 
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈
ℤ) | 
| 24 | 22, 23 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...𝑁) → (𝑚↑2) ∈ ℤ) | 
| 25 |   | zmodfz 10438 | 
. . . . . . . . . . . 12
⊢ (((𝑚↑2) ∈ ℤ ∧
𝑃 ∈ ℕ) →
((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))) | 
| 26 | 24, 4, 25 | syl2anr 290 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))) | 
| 27 |   | eleq1a 2268 | 
. . . . . . . . . . 11
⊢ (((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) | 
| 28 | 26, 27 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) | 
| 29 | 28 | rexlimdva 2614 | 
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) | 
| 30 | 29 | abssdv 3257 | 
. . . . . . . 8
⊢ (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0...(𝑃 − 1))) | 
| 31 | 5, 30 | eqsstrid 3229 | 
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ (0...(𝑃 − 1))) | 
| 32 | 20 | zcnd 9449 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 − 1) ∈ ℂ) | 
| 33 | 32 | addlidd 8176 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (0 + (𝑃 − 1)) = (𝑃 − 1)) | 
| 34 | 33 | oveq1d 5937 | 
. . . . . . . . . . 11
⊢ (𝜑 → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣)) | 
| 35 | 34 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣)) | 
| 36 | 31 | sselda 3183 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ (0...(𝑃 − 1))) | 
| 37 |   | fzrev3i 10163 | 
. . . . . . . . . . 11
⊢ (𝑣 ∈ (0...(𝑃 − 1)) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1))) | 
| 38 | 36, 37 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1))) | 
| 39 | 35, 38 | eqeltrrd 2274 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1))) | 
| 40 | 39, 7 | fmptd 5716 | 
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶(0...(𝑃 − 1))) | 
| 41 | 40 | frnd 5417 | 
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ (0...(𝑃 − 1))) | 
| 42 | 31, 41 | unssd 3339 | 
. . . . . 6
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1))) | 
| 43 |   | ssdomg 6837 | 
. . . . . 6
⊢
((0...(𝑃 − 1))
∈ Fin → ((𝐴 ∪
ran 𝐹) ⊆ (0...(𝑃 − 1)) → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))) | 
| 44 | 21, 42, 43 | sylc 62 | 
. . . . 5
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))) | 
| 45 |   | fihashdom 10895 | 
. . . . . 6
⊢ (((𝐴 ∪ ran 𝐹) ∈ Fin ∧ (0...(𝑃 − 1)) ∈ Fin) →
((♯‘(𝐴 ∪
ran 𝐹)) ≤
(♯‘(0...(𝑃
− 1))) ↔ (𝐴
∪ ran 𝐹) ≼
(0...(𝑃 −
1)))) | 
| 46 | 11, 21, 45 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))) | 
| 47 | 44, 46 | mpbird 167 | 
. . . 4
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1)))) | 
| 48 |   | fz01en 10128 | 
. . . . . . 7
⊢ (𝑃 ∈ ℤ →
(0...(𝑃 − 1)) ≈
(1...𝑃)) | 
| 49 | 16, 48 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (0...(𝑃 − 1)) ≈ (1...𝑃)) | 
| 50 |   | 1zzd 9353 | 
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) | 
| 51 | 50, 16 | fzfigd 10523 | 
. . . . . . 7
⊢ (𝜑 → (1...𝑃) ∈ Fin) | 
| 52 |   | hashen 10876 | 
. . . . . . 7
⊢
(((0...(𝑃 −
1)) ∈ Fin ∧ (1...𝑃) ∈ Fin) →
((♯‘(0...(𝑃
− 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃))) | 
| 53 | 21, 51, 52 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 →
((♯‘(0...(𝑃
− 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃))) | 
| 54 | 49, 53 | mpbird 167 | 
. . . . 5
⊢ (𝜑 → (♯‘(0...(𝑃 − 1))) =
(♯‘(1...𝑃))) | 
| 55 | 4 | nnnn0d 9302 | 
. . . . . 6
⊢ (𝜑 → 𝑃 ∈
ℕ0) | 
| 56 |   | hashfz1 10875 | 
. . . . . 6
⊢ (𝑃 ∈ ℕ0
→ (♯‘(1...𝑃)) = 𝑃) | 
| 57 | 55, 56 | syl 14 | 
. . . . 5
⊢ (𝜑 → (♯‘(1...𝑃)) = 𝑃) | 
| 58 | 54, 57 | eqtrd 2229 | 
. . . 4
⊢ (𝜑 → (♯‘(0...(𝑃 − 1))) = 𝑃) | 
| 59 | 47, 58 | breqtrd 4059 | 
. . 3
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ 𝑃) | 
| 60 | 14, 17, 59 | lensymd 8148 | 
. 2
⊢ (𝜑 → ¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))) | 
| 61 | 17 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 ∈ ℝ) | 
| 62 | 61 | ltp1d 8957 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (𝑃 + 1)) | 
| 63 | 1 | nncnd 9004 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 64 |   | 1cnd 8042 | 
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) | 
| 65 | 63, 63, 64, 64 | add4d 8195 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑁 + 𝑁) + (1 + 1)) = ((𝑁 + 1) + (𝑁 + 1))) | 
| 66 |   | 4sq.3 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) | 
| 67 | 66 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑃 + 1) = (((2 · 𝑁) + 1) + 1)) | 
| 68 |   | 2cn 9061 | 
. . . . . . . . . . 11
⊢ 2 ∈
ℂ | 
| 69 |   | mulcl 8006 | 
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑁
∈ ℂ) → (2 · 𝑁) ∈ ℂ) | 
| 70 | 68, 63, 69 | sylancr 414 | 
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) ∈
ℂ) | 
| 71 | 70, 64, 64 | addassd 8049 | 
. . . . . . . . 9
⊢ (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1))) | 
| 72 | 63 | 2timesd 9234 | 
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁)) | 
| 73 | 72 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝜑 → ((2 · 𝑁) + (1 + 1)) = ((𝑁 + 𝑁) + (1 + 1))) | 
| 74 | 67, 71, 73 | 3eqtrd 2233 | 
. . . . . . . 8
⊢ (𝜑 → (𝑃 + 1) = ((𝑁 + 𝑁) + (1 + 1))) | 
| 75 | 1 | nnzd 9447 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 76 | 18, 75 | fzfigd 10523 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0...𝑁) ∈ Fin) | 
| 77 | 26 | ex 115 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))) | 
| 78 | 4 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℕ) | 
| 79 | 22 | ad2antrl 490 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℤ) | 
| 80 | 79, 23 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚↑2) ∈ ℤ) | 
| 81 |   | elfzelz 10100 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ (0...𝑁) → 𝑢 ∈ ℤ) | 
| 82 | 81 | ad2antll 491 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℤ) | 
| 83 |   | zsqcl 10702 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ ℤ → (𝑢↑2) ∈
ℤ) | 
| 84 | 82, 83 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢↑2) ∈ ℤ) | 
| 85 |   | moddvds 11964 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧
(𝑢↑2) ∈ ℤ)
→ (((𝑚↑2) mod
𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2)))) | 
| 86 | 78, 80, 84, 85 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2)))) | 
| 87 | 79 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℂ) | 
| 88 | 82 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℂ) | 
| 89 |   | subsq 10738 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚 − 𝑢))) | 
| 90 | 87, 88, 89 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚 − 𝑢))) | 
| 91 | 90 | breq2d 4045 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚↑2) − (𝑢↑2)) ↔ 𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)))) | 
| 92 | 2 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℙ) | 
| 93 | 79, 82 | zaddcld 9452 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℤ) | 
| 94 | 79, 82 | zsubcld 9453 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 𝑢) ∈ ℤ) | 
| 95 |   | euclemma 12314 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃 ∈ ℙ ∧ (𝑚 + 𝑢) ∈ ℤ ∧ (𝑚 − 𝑢) ∈ ℤ) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) | 
| 96 | 92, 93, 94, 95 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) | 
| 97 | 86, 91, 96 | 3bitrd 214 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) | 
| 98 |   | zdceq 9401 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℤ ∧ 𝑢 ∈ ℤ) →
DECID 𝑚 =
𝑢) | 
| 99 | 79, 82, 98 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → DECID 𝑚 = 𝑢) | 
| 100 | 93 | zred 9448 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℝ) | 
| 101 |   | 2re 9060 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 2 ∈
ℝ | 
| 102 | 1 | nnred 9003 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 103 |   | remulcl 8007 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℝ) → (2 · 𝑁) ∈ ℝ) | 
| 104 | 101, 102,
103 | sylancr 414 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (2 · 𝑁) ∈
ℝ) | 
| 105 | 104 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) ∈ ℝ) | 
| 106 | 92, 15 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℤ) | 
| 107 | 106 | zred 9448 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℝ) | 
| 108 | 79 | zred 9448 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℝ) | 
| 109 | 82 | zred 9448 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℝ) | 
| 110 | 102 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℝ) | 
| 111 |   | elfzle2 10103 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ≤ 𝑁) | 
| 112 | 111 | ad2antrl 490 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ≤ 𝑁) | 
| 113 |   | elfzle2 10103 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈ (0...𝑁) → 𝑢 ≤ 𝑁) | 
| 114 | 113 | ad2antll 491 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ≤ 𝑁) | 
| 115 | 108, 109,
110, 110, 112, 114 | le2addd 8590 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (𝑁 + 𝑁)) | 
| 116 | 63 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℂ) | 
| 117 | 116 | 2timesd 9234 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) = (𝑁 + 𝑁)) | 
| 118 | 115, 117 | breqtrrd 4061 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (2 · 𝑁)) | 
| 119 | 104 | ltp1d 8957 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (2 · 𝑁) < ((2 · 𝑁) + 1)) | 
| 120 | 119, 66 | breqtrrd 4061 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (2 · 𝑁) < 𝑃) | 
| 121 | 120 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) < 𝑃) | 
| 122 | 100, 105,
107, 118, 121 | lelttrd 8151 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) < 𝑃) | 
| 123 |   | zltnle 9372 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑚 + 𝑢) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢))) | 
| 124 | 93, 106, 123 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢))) | 
| 125 | 122, 124 | mpbid 147 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (𝑚 + 𝑢)) | 
| 126 | 125 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ≤ (𝑚 + 𝑢)) | 
| 127 | 16 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 𝑃 ∈ ℤ) | 
| 128 | 93 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℤ) | 
| 129 |   | 1red 8041 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ∈ ℝ) | 
| 130 |   | nn0abscl 11250 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑚 − 𝑢) ∈ ℤ → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) | 
| 131 | 94, 130 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) | 
| 132 | 131 | nn0red 9303 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ∈ ℝ) | 
| 133 | 132 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℝ) | 
| 134 | 128 | zred 9448 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℝ) | 
| 135 | 131 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) | 
| 136 | 135 | nn0zd 9446 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℤ) | 
| 137 | 94 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 𝑢) ∈ ℂ) | 
| 138 | 137 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 − 𝑢) ∈ ℂ) | 
| 139 | 87, 88 | subeq0ad 8347 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 − 𝑢) = 0 ↔ 𝑚 = 𝑢)) | 
| 140 | 139 | necon3bid 2408 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 − 𝑢) ≠ 0 ↔ 𝑚 ≠ 𝑢)) | 
| 141 | 140 | biimpar 297 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 − 𝑢) ≠ 0) | 
| 142 |   | 0zd 9338 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 0 ∈ ℤ) | 
| 143 |   | zapne 9400 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑚 − 𝑢) ∈ ℤ ∧ 0 ∈ ℤ)
→ ((𝑚 − 𝑢) # 0 ↔ (𝑚 − 𝑢) ≠ 0)) | 
| 144 | 94, 142, 143 | syl2an2r 595 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ((𝑚 − 𝑢) # 0 ↔ (𝑚 − 𝑢) ≠ 0)) | 
| 145 | 141, 144 | mpbird 167 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 − 𝑢) # 0) | 
| 146 | 138, 145 | absrpclapd 11353 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈
ℝ+) | 
| 147 | 146 | rpgt0d 9774 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 0 < (abs‘(𝑚 − 𝑢))) | 
| 148 |   | elnnz 9336 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((abs‘(𝑚
− 𝑢)) ∈ ℕ
↔ ((abs‘(𝑚
− 𝑢)) ∈ ℤ
∧ 0 < (abs‘(𝑚
− 𝑢)))) | 
| 149 | 136, 147,
148 | sylanbrc 417 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℕ) | 
| 150 | 149 | nnge1d 9033 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ≤ (abs‘(𝑚 − 𝑢))) | 
| 151 |   | 0cnd 8019 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ∈
ℂ) | 
| 152 | 87, 88, 151 | abs3difd 11365 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ≤ ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢)))) | 
| 153 | 87 | subid1d 8326 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 0) = 𝑚) | 
| 154 | 153 | fveq2d 5562 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = (abs‘𝑚)) | 
| 155 |   | elfzle1 10102 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚) | 
| 156 | 155 | ad2antrl 490 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑚) | 
| 157 | 108, 156 | absidd 11332 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑚) = 𝑚) | 
| 158 | 154, 157 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = 𝑚) | 
| 159 |   | 0cn 8018 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 0 ∈
ℂ | 
| 160 |   | abssub 11266 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((0
∈ ℂ ∧ 𝑢
∈ ℂ) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0))) | 
| 161 | 159, 88, 160 | sylancr 414 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0))) | 
| 162 | 88 | subid1d 8326 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢 − 0) = 𝑢) | 
| 163 | 162 | fveq2d 5562 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑢 − 0)) = (abs‘𝑢)) | 
| 164 |   | elfzle1 10102 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑢 ∈ (0...𝑁) → 0 ≤ 𝑢) | 
| 165 | 164 | ad2antll 491 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑢) | 
| 166 | 109, 165 | absidd 11332 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑢) = 𝑢) | 
| 167 | 161, 163,
166 | 3eqtrd 2233 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = 𝑢) | 
| 168 | 158, 167 | oveq12d 5940 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))) = (𝑚 + 𝑢)) | 
| 169 | 152, 168 | breqtrd 4059 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) | 
| 170 | 169 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) | 
| 171 | 129, 133,
134, 150, 170 | letrd 8150 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ≤ (𝑚 + 𝑢)) | 
| 172 |   | elnnz1 9349 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑚 + 𝑢) ∈ ℕ ↔ ((𝑚 + 𝑢) ∈ ℤ ∧ 1 ≤ (𝑚 + 𝑢))) | 
| 173 | 128, 171,
172 | sylanbrc 417 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℕ) | 
| 174 |   | dvdsle 12009 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ ℤ ∧ (𝑚 + 𝑢) ∈ ℕ) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢))) | 
| 175 | 127, 173,
174 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢))) | 
| 176 | 126, 175 | mtod 664 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ∥ (𝑚 + 𝑢)) | 
| 177 | 176 | ex 115 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢))) | 
| 178 | 177 | a1d 22 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢)))) | 
| 179 | 178 | necon4addc 2437 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢))) | 
| 180 | 99, 179 | mpd 13 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢)) | 
| 181 |   | dvdsabsb 11975 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ ℤ ∧ (𝑚 − 𝑢) ∈ ℤ) → (𝑃 ∥ (𝑚 − 𝑢) ↔ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) | 
| 182 | 106, 94, 181 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 − 𝑢) ↔ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) | 
| 183 |   | letr 8109 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑃 ∈ ℝ ∧
(abs‘(𝑚 − 𝑢)) ∈ ℝ ∧ (𝑚 + 𝑢) ∈ ℝ) → ((𝑃 ≤ (abs‘(𝑚 − 𝑢)) ∧ (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) | 
| 184 | 107, 132,
100, 183 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ≤ (abs‘(𝑚 − 𝑢)) ∧ (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) | 
| 185 | 169, 184 | mpan2d 428 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ≤ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) | 
| 186 | 125, 185 | mtod 664 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (abs‘(𝑚 − 𝑢))) | 
| 187 | 186 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ≤ (abs‘(𝑚 − 𝑢))) | 
| 188 |   | dvdsle 12009 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ ℤ ∧
(abs‘(𝑚 − 𝑢)) ∈ ℕ) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (abs‘(𝑚 − 𝑢)))) | 
| 189 | 106, 149,
188 | syl2an2r 595 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (abs‘(𝑚 − 𝑢)))) | 
| 190 | 187, 189 | mtod 664 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ∥ (abs‘(𝑚 − 𝑢))) | 
| 191 | 190 | ex 115 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) | 
| 192 | 191 | a1d 22 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚 − 𝑢))))) | 
| 193 | 192 | necon4addc 2437 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑚 = 𝑢))) | 
| 194 | 99, 193 | mpd 13 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑚 = 𝑢)) | 
| 195 | 182, 194 | sylbid 150 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 − 𝑢) → 𝑚 = 𝑢)) | 
| 196 | 180, 195 | jaod 718 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)) → 𝑚 = 𝑢)) | 
| 197 | 97, 196 | sylbid 150 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) → 𝑚 = 𝑢)) | 
| 198 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑢 → (𝑚↑2) = (𝑢↑2)) | 
| 199 | 198 | oveq1d 5937 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑢 → ((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃)) | 
| 200 | 197, 199 | impbid1 142 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢)) | 
| 201 | 200 | ex 115 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁)) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢))) | 
| 202 | 77, 201 | dom2lem 6831 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1))) | 
| 203 |   | f1f1orn 5515 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)) → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) | 
| 204 | 202, 203 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) | 
| 205 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) | 
| 206 | 205 | rnmpt 4914 | 
. . . . . . . . . . . . . . . . 17
⊢ ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} | 
| 207 | 5, 206 | eqtr4i 2220 | 
. . . . . . . . . . . . . . . 16
⊢ 𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) | 
| 208 |   | f1oeq3 5494 | 
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) → ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))) | 
| 209 | 207, 208 | ax-mp 5 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) | 
| 210 | 204, 209 | sylibr 134 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴) | 
| 211 |   | f1oeng 6816 | 
. . . . . . . . . . . . . 14
⊢
(((0...𝑁) ∈ Fin
∧ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴) → (0...𝑁) ≈ 𝐴) | 
| 212 | 76, 210, 211 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...𝑁) ≈ 𝐴) | 
| 213 | 212 | ensymd 6842 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≈ (0...𝑁)) | 
| 214 |   | ax-1cn 7972 | 
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ | 
| 215 |   | pncan 8232 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) | 
| 216 | 63, 214, 215 | sylancl 413 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) | 
| 217 | 216 | oveq2d 5938 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) | 
| 218 | 1 | nnnn0d 9302 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 219 |   | peano2nn0 9289 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) | 
| 220 | 218, 219 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) | 
| 221 | 220 | nn0zd 9446 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) | 
| 222 |   | fz01en 10128 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 + 1) ∈ ℤ →
(0...((𝑁 + 1) − 1))
≈ (1...(𝑁 +
1))) | 
| 223 | 221, 222 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1))) | 
| 224 | 217, 223 | eqbrtrrd 4057 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑁) ≈ (1...(𝑁 + 1))) | 
| 225 |   | entr 6843 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ≈ (0...𝑁) ∧ (0...𝑁) ≈ (1...(𝑁 + 1))) → 𝐴 ≈ (1...(𝑁 + 1))) | 
| 226 | 213, 224,
225 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≈ (1...(𝑁 + 1))) | 
| 227 | 50, 221 | fzfigd 10523 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (1...(𝑁 + 1)) ∈ Fin) | 
| 228 |   | hashen 10876 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Fin ∧ (1...(𝑁 + 1)) ∈ Fin) →
((♯‘𝐴) =
(♯‘(1...(𝑁 +
1))) ↔ 𝐴 ≈
(1...(𝑁 +
1)))) | 
| 229 | 6, 227, 228 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1)))) | 
| 230 | 226, 229 | mpbird 167 | 
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐴) = (♯‘(1...(𝑁 + 1)))) | 
| 231 |   | hashfz1 10875 | 
. . . . . . . . . . 11
⊢ ((𝑁 + 1) ∈ ℕ0
→ (♯‘(1...(𝑁 + 1))) = (𝑁 + 1)) | 
| 232 | 220, 231 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1)) | 
| 233 | 230, 232 | eqtrd 2229 | 
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐴) = (𝑁 + 1)) | 
| 234 | 39 | ex 115 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑣 ∈ 𝐴 → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1)))) | 
| 235 | 32 | adantr 276 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (𝑃 − 1) ∈ ℂ) | 
| 236 |   | fzssuz 10140 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(0...(𝑃 − 1))
⊆ (ℤ≥‘0) | 
| 237 |   | uzssz 9621 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤ≥‘0) ⊆ ℤ | 
| 238 |   | zsscn 9334 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℤ
⊆ ℂ | 
| 239 | 237, 238 | sstri 3192 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(ℤ≥‘0) ⊆ ℂ | 
| 240 | 236, 239 | sstri 3192 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(0...(𝑃 − 1))
⊆ ℂ | 
| 241 | 31, 240 | sstrdi 3195 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ ℂ) | 
| 242 | 241 | sselda 3183 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℂ) | 
| 243 | 242 | adantrr 479 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑣 ∈ ℂ) | 
| 244 | 241 | sselda 3183 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℂ) | 
| 245 | 244 | adantrl 478 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ ℂ) | 
| 246 | 235, 243,
245 | subcanad 8380 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘)) | 
| 247 | 246 | ex 115 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘))) | 
| 248 | 234, 247 | dom2lem 6831 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1))) | 
| 249 |   | f1eq1 5458 | 
. . . . . . . . . . . . . 14
⊢ (𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) → (𝐹:𝐴–1-1→(0...(𝑃 − 1)) ↔ (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1)))) | 
| 250 | 7, 249 | ax-mp 5 | 
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴–1-1→(0...(𝑃 − 1)) ↔ (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1))) | 
| 251 | 248, 250 | sylibr 134 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴–1-1→(0...(𝑃 − 1))) | 
| 252 |   | f1f1orn 5515 | 
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–1-1→(0...(𝑃 − 1)) → 𝐹:𝐴–1-1-onto→ran
𝐹) | 
| 253 | 251, 252 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→ran
𝐹) | 
| 254 | 6, 253 | fihasheqf1od 10881 | 
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐴) = (♯‘ran 𝐹)) | 
| 255 | 254, 233 | eqtr3d 2231 | 
. . . . . . . . 9
⊢ (𝜑 → (♯‘ran 𝐹) = (𝑁 + 1)) | 
| 256 | 233, 255 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝜑 → ((♯‘𝐴) + (♯‘ran 𝐹)) = ((𝑁 + 1) + (𝑁 + 1))) | 
| 257 | 65, 74, 256 | 3eqtr4d 2239 | 
. . . . . . 7
⊢ (𝜑 → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹))) | 
| 258 | 257 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹))) | 
| 259 | 6 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝐴 ∈ Fin) | 
| 260 | 8 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → ran 𝐹 ∈ Fin) | 
| 261 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝐴 ∩ ran 𝐹) = ∅) | 
| 262 |   | hashun 10897 | 
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹))) | 
| 263 | 259, 260,
261, 262 | syl3anc 1249 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹))) | 
| 264 | 258, 263 | eqtr4d 2232 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = (♯‘(𝐴 ∪ ran 𝐹))) | 
| 265 | 62, 264 | breqtrd 4059 | 
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))) | 
| 266 | 265 | ex 115 | 
. . 3
⊢ (𝜑 → ((𝐴 ∩ ran 𝐹) = ∅ → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))) | 
| 267 | 266 | necon3bd 2410 | 
. 2
⊢ (𝜑 → (¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)) → (𝐴 ∩ ran 𝐹) ≠ ∅)) | 
| 268 | 60, 267 | mpd 13 | 
1
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅) |