Step | Hyp | Ref
| Expression |
1 | | 4sq.2 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | 4sq.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℙ) |
3 | | prmnn 12145 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
4 | 2, 3 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℕ) |
5 | | 4sqlem11.5 |
. . . . . . 7
⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
6 | 1, 4, 5 | 4sqlemafi 12430 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ Fin) |
7 | | 4sqlem11.6 |
. . . . . . 7
⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) |
8 | 1, 4, 5, 7 | 4sqlemffi 12431 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
9 | 1, 4, 5, 7 | 4sqleminfi 12432 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
10 | | unfiin 6955 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) ∈ Fin) → (𝐴 ∪ ran 𝐹) ∈ Fin) |
11 | 6, 8, 9, 10 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ∈ Fin) |
12 | | hashcl 10796 |
. . . . 5
⊢ ((𝐴 ∪ ran 𝐹) ∈ Fin → (♯‘(𝐴 ∪ ran 𝐹)) ∈
ℕ0) |
13 | 11, 12 | syl 14 |
. . . 4
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈
ℕ0) |
14 | 13 | nn0red 9261 |
. . 3
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℝ) |
15 | | prmz 12146 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
16 | 2, 15 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℤ) |
17 | 16 | zred 9406 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℝ) |
18 | | 0zd 9296 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
19 | | peano2zm 9322 |
. . . . . . . 8
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
20 | 16, 19 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) |
21 | 18, 20 | fzfigd 10464 |
. . . . . 6
⊢ (𝜑 → (0...(𝑃 − 1)) ∈ Fin) |
22 | | elfzelz 10057 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ) |
23 | | zsqcl 10625 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈
ℤ) |
24 | 22, 23 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...𝑁) → (𝑚↑2) ∈ ℤ) |
25 | | zmodfz 10379 |
. . . . . . . . . . . 12
⊢ (((𝑚↑2) ∈ ℤ ∧
𝑃 ∈ ℕ) →
((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))) |
26 | 24, 4, 25 | syl2anr 290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))) |
27 | | eleq1a 2261 |
. . . . . . . . . . 11
⊢ (((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) |
28 | 26, 27 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) |
29 | 28 | rexlimdva 2607 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) |
30 | 29 | abssdv 3244 |
. . . . . . . 8
⊢ (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0...(𝑃 − 1))) |
31 | 5, 30 | eqsstrid 3216 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ (0...(𝑃 − 1))) |
32 | 20 | zcnd 9407 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 − 1) ∈ ℂ) |
33 | 32 | addlidd 8138 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 + (𝑃 − 1)) = (𝑃 − 1)) |
34 | 33 | oveq1d 5912 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣)) |
35 | 34 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣)) |
36 | 31 | sselda 3170 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ (0...(𝑃 − 1))) |
37 | | fzrev3i 10120 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (0...(𝑃 − 1)) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1))) |
38 | 36, 37 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1))) |
39 | 35, 38 | eqeltrrd 2267 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1))) |
40 | 39, 7 | fmptd 5691 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶(0...(𝑃 − 1))) |
41 | 40 | frnd 5394 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ (0...(𝑃 − 1))) |
42 | 31, 41 | unssd 3326 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1))) |
43 | | ssdomg 6805 |
. . . . . 6
⊢
((0...(𝑃 − 1))
∈ Fin → ((𝐴 ∪
ran 𝐹) ⊆ (0...(𝑃 − 1)) → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))) |
44 | 21, 42, 43 | sylc 62 |
. . . . 5
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))) |
45 | | fihashdom 10818 |
. . . . . 6
⊢ (((𝐴 ∪ ran 𝐹) ∈ Fin ∧ (0...(𝑃 − 1)) ∈ Fin) →
((♯‘(𝐴 ∪
ran 𝐹)) ≤
(♯‘(0...(𝑃
− 1))) ↔ (𝐴
∪ ran 𝐹) ≼
(0...(𝑃 −
1)))) |
46 | 11, 21, 45 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))) |
47 | 44, 46 | mpbird 167 |
. . . 4
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1)))) |
48 | | fz01en 10085 |
. . . . . . 7
⊢ (𝑃 ∈ ℤ →
(0...(𝑃 − 1)) ≈
(1...𝑃)) |
49 | 16, 48 | syl 14 |
. . . . . 6
⊢ (𝜑 → (0...(𝑃 − 1)) ≈ (1...𝑃)) |
50 | | 1zzd 9311 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
51 | 50, 16 | fzfigd 10464 |
. . . . . . 7
⊢ (𝜑 → (1...𝑃) ∈ Fin) |
52 | | hashen 10799 |
. . . . . . 7
⊢
(((0...(𝑃 −
1)) ∈ Fin ∧ (1...𝑃) ∈ Fin) →
((♯‘(0...(𝑃
− 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃))) |
53 | 21, 51, 52 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 →
((♯‘(0...(𝑃
− 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃))) |
54 | 49, 53 | mpbird 167 |
. . . . 5
⊢ (𝜑 → (♯‘(0...(𝑃 − 1))) =
(♯‘(1...𝑃))) |
55 | 4 | nnnn0d 9260 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
56 | | hashfz1 10798 |
. . . . . 6
⊢ (𝑃 ∈ ℕ0
→ (♯‘(1...𝑃)) = 𝑃) |
57 | 55, 56 | syl 14 |
. . . . 5
⊢ (𝜑 → (♯‘(1...𝑃)) = 𝑃) |
58 | 54, 57 | eqtrd 2222 |
. . . 4
⊢ (𝜑 → (♯‘(0...(𝑃 − 1))) = 𝑃) |
59 | 47, 58 | breqtrd 4044 |
. . 3
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ 𝑃) |
60 | 14, 17, 59 | lensymd 8110 |
. 2
⊢ (𝜑 → ¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))) |
61 | 17 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 ∈ ℝ) |
62 | 61 | ltp1d 8918 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (𝑃 + 1)) |
63 | 1 | nncnd 8964 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℂ) |
64 | | 1cnd 8004 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
65 | 63, 63, 64, 64 | add4d 8157 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 + 𝑁) + (1 + 1)) = ((𝑁 + 1) + (𝑁 + 1))) |
66 | | 4sq.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) |
67 | 66 | oveq1d 5912 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 + 1) = (((2 · 𝑁) + 1) + 1)) |
68 | | 2cn 9021 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
69 | | mulcl 7969 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑁
∈ ℂ) → (2 · 𝑁) ∈ ℂ) |
70 | 68, 63, 69 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) ∈
ℂ) |
71 | 70, 64, 64 | addassd 8011 |
. . . . . . . . 9
⊢ (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1))) |
72 | 63 | 2timesd 9192 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁)) |
73 | 72 | oveq1d 5912 |
. . . . . . . . 9
⊢ (𝜑 → ((2 · 𝑁) + (1 + 1)) = ((𝑁 + 𝑁) + (1 + 1))) |
74 | 67, 71, 73 | 3eqtrd 2226 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 + 1) = ((𝑁 + 𝑁) + (1 + 1))) |
75 | 1 | nnzd 9405 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℤ) |
76 | 18, 75 | fzfigd 10464 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
77 | 26 | ex 115 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))) |
78 | 4 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℕ) |
79 | 22 | ad2antrl 490 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℤ) |
80 | 79, 23 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚↑2) ∈ ℤ) |
81 | | elfzelz 10057 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ (0...𝑁) → 𝑢 ∈ ℤ) |
82 | 81 | ad2antll 491 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℤ) |
83 | | zsqcl 10625 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ ℤ → (𝑢↑2) ∈
ℤ) |
84 | 82, 83 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢↑2) ∈ ℤ) |
85 | | moddvds 11841 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧
(𝑢↑2) ∈ ℤ)
→ (((𝑚↑2) mod
𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2)))) |
86 | 78, 80, 84, 85 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2)))) |
87 | 79 | zcnd 9407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℂ) |
88 | 82 | zcnd 9407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℂ) |
89 | | subsq 10661 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚 − 𝑢))) |
90 | 87, 88, 89 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚 − 𝑢))) |
91 | 90 | breq2d 4030 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚↑2) − (𝑢↑2)) ↔ 𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)))) |
92 | 2 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℙ) |
93 | 79, 82 | zaddcld 9410 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℤ) |
94 | 79, 82 | zsubcld 9411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 𝑢) ∈ ℤ) |
95 | | euclemma 12181 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃 ∈ ℙ ∧ (𝑚 + 𝑢) ∈ ℤ ∧ (𝑚 − 𝑢) ∈ ℤ) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) |
96 | 92, 93, 94, 95 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) |
97 | 86, 91, 96 | 3bitrd 214 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) |
98 | | zdceq 9359 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℤ ∧ 𝑢 ∈ ℤ) →
DECID 𝑚 =
𝑢) |
99 | 79, 82, 98 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → DECID 𝑚 = 𝑢) |
100 | 93 | zred 9406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℝ) |
101 | | 2re 9020 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 2 ∈
ℝ |
102 | 1 | nnred 8963 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑁 ∈ ℝ) |
103 | | remulcl 7970 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℝ) → (2 · 𝑁) ∈ ℝ) |
104 | 101, 102,
103 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (2 · 𝑁) ∈
ℝ) |
105 | 104 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) ∈ ℝ) |
106 | 92, 15 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℤ) |
107 | 106 | zred 9406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℝ) |
108 | 79 | zred 9406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℝ) |
109 | 82 | zred 9406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℝ) |
110 | 102 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℝ) |
111 | | elfzle2 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ≤ 𝑁) |
112 | 111 | ad2antrl 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ≤ 𝑁) |
113 | | elfzle2 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈ (0...𝑁) → 𝑢 ≤ 𝑁) |
114 | 113 | ad2antll 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ≤ 𝑁) |
115 | 108, 109,
110, 110, 112, 114 | le2addd 8551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (𝑁 + 𝑁)) |
116 | 63 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℂ) |
117 | 116 | 2timesd 9192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) = (𝑁 + 𝑁)) |
118 | 115, 117 | breqtrrd 4046 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (2 · 𝑁)) |
119 | 104 | ltp1d 8918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (2 · 𝑁) < ((2 · 𝑁) + 1)) |
120 | 119, 66 | breqtrrd 4046 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (2 · 𝑁) < 𝑃) |
121 | 120 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) < 𝑃) |
122 | 100, 105,
107, 118, 121 | lelttrd 8113 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) < 𝑃) |
123 | | zltnle 9330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑚 + 𝑢) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢))) |
124 | 93, 106, 123 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢))) |
125 | 122, 124 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (𝑚 + 𝑢)) |
126 | 125 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ≤ (𝑚 + 𝑢)) |
127 | 16 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 𝑃 ∈ ℤ) |
128 | 93 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℤ) |
129 | | 1red 8003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ∈ ℝ) |
130 | | nn0abscl 11129 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑚 − 𝑢) ∈ ℤ → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) |
131 | 94, 130 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) |
132 | 131 | nn0red 9261 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ∈ ℝ) |
133 | 132 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℝ) |
134 | 128 | zred 9406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℝ) |
135 | 131 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) |
136 | 135 | nn0zd 9404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℤ) |
137 | 94 | zcnd 9407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 𝑢) ∈ ℂ) |
138 | 137 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 − 𝑢) ∈ ℂ) |
139 | 87, 88 | subeq0ad 8309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 − 𝑢) = 0 ↔ 𝑚 = 𝑢)) |
140 | 139 | necon3bid 2401 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 − 𝑢) ≠ 0 ↔ 𝑚 ≠ 𝑢)) |
141 | 140 | biimpar 297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 − 𝑢) ≠ 0) |
142 | | 0zd 9296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 0 ∈ ℤ) |
143 | | zapne 9358 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑚 − 𝑢) ∈ ℤ ∧ 0 ∈ ℤ)
→ ((𝑚 − 𝑢) # 0 ↔ (𝑚 − 𝑢) ≠ 0)) |
144 | 94, 142, 143 | syl2an2r 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ((𝑚 − 𝑢) # 0 ↔ (𝑚 − 𝑢) ≠ 0)) |
145 | 141, 144 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 − 𝑢) # 0) |
146 | 138, 145 | absrpclapd 11232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈
ℝ+) |
147 | 146 | rpgt0d 9731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 0 < (abs‘(𝑚 − 𝑢))) |
148 | | elnnz 9294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((abs‘(𝑚
− 𝑢)) ∈ ℕ
↔ ((abs‘(𝑚
− 𝑢)) ∈ ℤ
∧ 0 < (abs‘(𝑚
− 𝑢)))) |
149 | 136, 147,
148 | sylanbrc 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℕ) |
150 | 149 | nnge1d 8993 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ≤ (abs‘(𝑚 − 𝑢))) |
151 | | 0cnd 7981 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ∈
ℂ) |
152 | 87, 88, 151 | abs3difd 11244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ≤ ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢)))) |
153 | 87 | subid1d 8288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 0) = 𝑚) |
154 | 153 | fveq2d 5538 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = (abs‘𝑚)) |
155 | | elfzle1 10059 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚) |
156 | 155 | ad2antrl 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑚) |
157 | 108, 156 | absidd 11211 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑚) = 𝑚) |
158 | 154, 157 | eqtrd 2222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = 𝑚) |
159 | | 0cn 7980 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 0 ∈
ℂ |
160 | | abssub 11145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((0
∈ ℂ ∧ 𝑢
∈ ℂ) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0))) |
161 | 159, 88, 160 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0))) |
162 | 88 | subid1d 8288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢 − 0) = 𝑢) |
163 | 162 | fveq2d 5538 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑢 − 0)) = (abs‘𝑢)) |
164 | | elfzle1 10059 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑢 ∈ (0...𝑁) → 0 ≤ 𝑢) |
165 | 164 | ad2antll 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑢) |
166 | 109, 165 | absidd 11211 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑢) = 𝑢) |
167 | 161, 163,
166 | 3eqtrd 2226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = 𝑢) |
168 | 158, 167 | oveq12d 5915 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))) = (𝑚 + 𝑢)) |
169 | 152, 168 | breqtrd 4044 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) |
170 | 169 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) |
171 | 129, 133,
134, 150, 170 | letrd 8112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ≤ (𝑚 + 𝑢)) |
172 | | elnnz1 9307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑚 + 𝑢) ∈ ℕ ↔ ((𝑚 + 𝑢) ∈ ℤ ∧ 1 ≤ (𝑚 + 𝑢))) |
173 | 128, 171,
172 | sylanbrc 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℕ) |
174 | | dvdsle 11885 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ ℤ ∧ (𝑚 + 𝑢) ∈ ℕ) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢))) |
175 | 127, 173,
174 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢))) |
176 | 126, 175 | mtod 664 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ∥ (𝑚 + 𝑢)) |
177 | 176 | ex 115 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢))) |
178 | 177 | a1d 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢)))) |
179 | 178 | necon4addc 2430 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢))) |
180 | 99, 179 | mpd 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢)) |
181 | | dvdsabsb 11852 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ ℤ ∧ (𝑚 − 𝑢) ∈ ℤ) → (𝑃 ∥ (𝑚 − 𝑢) ↔ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) |
182 | 106, 94, 181 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 − 𝑢) ↔ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) |
183 | | letr 8071 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑃 ∈ ℝ ∧
(abs‘(𝑚 − 𝑢)) ∈ ℝ ∧ (𝑚 + 𝑢) ∈ ℝ) → ((𝑃 ≤ (abs‘(𝑚 − 𝑢)) ∧ (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) |
184 | 107, 132,
100, 183 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ≤ (abs‘(𝑚 − 𝑢)) ∧ (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) |
185 | 169, 184 | mpan2d 428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ≤ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) |
186 | 125, 185 | mtod 664 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (abs‘(𝑚 − 𝑢))) |
187 | 186 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ≤ (abs‘(𝑚 − 𝑢))) |
188 | | dvdsle 11885 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ ℤ ∧
(abs‘(𝑚 − 𝑢)) ∈ ℕ) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (abs‘(𝑚 − 𝑢)))) |
189 | 106, 149,
188 | syl2an2r 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (abs‘(𝑚 − 𝑢)))) |
190 | 187, 189 | mtod 664 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ∥ (abs‘(𝑚 − 𝑢))) |
191 | 190 | ex 115 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) |
192 | 191 | a1d 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚 − 𝑢))))) |
193 | 192 | necon4addc 2430 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (DECID 𝑚 = 𝑢 → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑚 = 𝑢))) |
194 | 99, 193 | mpd 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑚 = 𝑢)) |
195 | 182, 194 | sylbid 150 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 − 𝑢) → 𝑚 = 𝑢)) |
196 | 180, 195 | jaod 718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)) → 𝑚 = 𝑢)) |
197 | 97, 196 | sylbid 150 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) → 𝑚 = 𝑢)) |
198 | | oveq1 5904 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑢 → (𝑚↑2) = (𝑢↑2)) |
199 | 198 | oveq1d 5912 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑢 → ((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃)) |
200 | 197, 199 | impbid1 142 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢)) |
201 | 200 | ex 115 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁)) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢))) |
202 | 77, 201 | dom2lem 6799 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1))) |
203 | | f1f1orn 5491 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)) → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) |
204 | 202, 203 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) |
205 | | eqid 2189 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) |
206 | 205 | rnmpt 4893 |
. . . . . . . . . . . . . . . . 17
⊢ ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
207 | 5, 206 | eqtr4i 2213 |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) |
208 | | f1oeq3 5470 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) → ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))) |
209 | 207, 208 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) |
210 | 204, 209 | sylibr 134 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴) |
211 | | f1oeng 6784 |
. . . . . . . . . . . . . 14
⊢
(((0...𝑁) ∈ Fin
∧ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴) → (0...𝑁) ≈ 𝐴) |
212 | 76, 210, 211 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...𝑁) ≈ 𝐴) |
213 | 212 | ensymd 6810 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≈ (0...𝑁)) |
214 | | ax-1cn 7935 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
215 | | pncan 8194 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
216 | 63, 214, 215 | sylancl 413 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
217 | 216 | oveq2d 5913 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
218 | 1 | nnnn0d 9260 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
219 | | peano2nn0 9247 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
220 | 218, 219 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
221 | 220 | nn0zd 9404 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
222 | | fz01en 10085 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 + 1) ∈ ℤ →
(0...((𝑁 + 1) − 1))
≈ (1...(𝑁 +
1))) |
223 | 221, 222 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1))) |
224 | 217, 223 | eqbrtrrd 4042 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑁) ≈ (1...(𝑁 + 1))) |
225 | | entr 6811 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≈ (0...𝑁) ∧ (0...𝑁) ≈ (1...(𝑁 + 1))) → 𝐴 ≈ (1...(𝑁 + 1))) |
226 | 213, 224,
225 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≈ (1...(𝑁 + 1))) |
227 | 50, 221 | fzfigd 10464 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...(𝑁 + 1)) ∈ Fin) |
228 | | hashen 10799 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Fin ∧ (1...(𝑁 + 1)) ∈ Fin) →
((♯‘𝐴) =
(♯‘(1...(𝑁 +
1))) ↔ 𝐴 ≈
(1...(𝑁 +
1)))) |
229 | 6, 227, 228 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1)))) |
230 | 226, 229 | mpbird 167 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐴) = (♯‘(1...(𝑁 + 1)))) |
231 | | hashfz1 10798 |
. . . . . . . . . . 11
⊢ ((𝑁 + 1) ∈ ℕ0
→ (♯‘(1...(𝑁 + 1))) = (𝑁 + 1)) |
232 | 220, 231 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1)) |
233 | 230, 232 | eqtrd 2222 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐴) = (𝑁 + 1)) |
234 | 39 | ex 115 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑣 ∈ 𝐴 → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1)))) |
235 | 32 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (𝑃 − 1) ∈ ℂ) |
236 | | fzssuz 10097 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0...(𝑃 − 1))
⊆ (ℤ≥‘0) |
237 | | uzssz 9579 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤ≥‘0) ⊆ ℤ |
238 | | zsscn 9292 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℤ
⊆ ℂ |
239 | 237, 238 | sstri 3179 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(ℤ≥‘0) ⊆ ℂ |
240 | 236, 239 | sstri 3179 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0...(𝑃 − 1))
⊆ ℂ |
241 | 31, 240 | sstrdi 3182 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
242 | 241 | sselda 3170 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℂ) |
243 | 242 | adantrr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑣 ∈ ℂ) |
244 | 241 | sselda 3170 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℂ) |
245 | 244 | adantrl 478 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ ℂ) |
246 | 235, 243,
245 | subcanad 8342 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘)) |
247 | 246 | ex 115 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘))) |
248 | 234, 247 | dom2lem 6799 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1))) |
249 | | f1eq1 5435 |
. . . . . . . . . . . . . 14
⊢ (𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) → (𝐹:𝐴–1-1→(0...(𝑃 − 1)) ↔ (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1)))) |
250 | 7, 249 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴–1-1→(0...(𝑃 − 1)) ↔ (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1))) |
251 | 248, 250 | sylibr 134 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴–1-1→(0...(𝑃 − 1))) |
252 | | f1f1orn 5491 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–1-1→(0...(𝑃 − 1)) → 𝐹:𝐴–1-1-onto→ran
𝐹) |
253 | 251, 252 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
254 | 6, 253 | fihasheqf1od 10804 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐴) = (♯‘ran 𝐹)) |
255 | 254, 233 | eqtr3d 2224 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘ran 𝐹) = (𝑁 + 1)) |
256 | 233, 255 | oveq12d 5915 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘𝐴) + (♯‘ran 𝐹)) = ((𝑁 + 1) + (𝑁 + 1))) |
257 | 65, 74, 256 | 3eqtr4d 2232 |
. . . . . . 7
⊢ (𝜑 → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹))) |
258 | 257 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹))) |
259 | 6 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝐴 ∈ Fin) |
260 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → ran 𝐹 ∈ Fin) |
261 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝐴 ∩ ran 𝐹) = ∅) |
262 | | hashun 10820 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹))) |
263 | 259, 260,
261, 262 | syl3anc 1249 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹))) |
264 | 258, 263 | eqtr4d 2225 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = (♯‘(𝐴 ∪ ran 𝐹))) |
265 | 62, 264 | breqtrd 4044 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))) |
266 | 265 | ex 115 |
. . 3
⊢ (𝜑 → ((𝐴 ∩ ran 𝐹) = ∅ → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))) |
267 | 266 | necon3bd 2403 |
. 2
⊢ (𝜑 → (¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)) → (𝐴 ∩ ran 𝐹) ≠ ∅)) |
268 | 60, 267 | mpd 13 |
1
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅) |