ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccatin2 GIF version

Theorem swrdccatin2 11256
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccatin2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))

Proof of Theorem swrdccatin2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 swrdccatin2.l . . . . . . . 8 𝐿 = (♯‘𝐴)
2 oveq1 6007 . . . . . . . . . 10 (𝐿 = (♯‘𝐴) → (𝐿...𝑁) = ((♯‘𝐴)...𝑁))
32eleq2d 2299 . . . . . . . . 9 (𝐿 = (♯‘𝐴) → (𝑀 ∈ (𝐿...𝑁) ↔ 𝑀 ∈ ((♯‘𝐴)...𝑁)))
4 id 19 . . . . . . . . . . 11 (𝐿 = (♯‘𝐴) → 𝐿 = (♯‘𝐴))
5 oveq1 6007 . . . . . . . . . . 11 (𝐿 = (♯‘𝐴) → (𝐿 + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
64, 5oveq12d 6018 . . . . . . . . . 10 (𝐿 = (♯‘𝐴) → (𝐿...(𝐿 + (♯‘𝐵))) = ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))
76eleq2d 2299 . . . . . . . . 9 (𝐿 = (♯‘𝐴) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
83, 7anbi12d 473 . . . . . . . 8 (𝐿 = (♯‘𝐴) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ↔ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))
91, 8ax-mp 5 . . . . . . 7 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ↔ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
10 lencl 11070 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
11 elnn0uz 9756 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
12 fzss1 10255 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘0) → ((♯‘𝐴)...𝑁) ⊆ (0...𝑁))
1311, 12sylbi 121 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴)...𝑁) ⊆ (0...𝑁))
1413sseld 3223 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → (𝑀 ∈ ((♯‘𝐴)...𝑁) → 𝑀 ∈ (0...𝑁)))
15 fzss1 10255 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘0) → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵))))
1611, 15sylbi 121 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵))))
1716sseld 3223 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
1814, 17anim12d 335 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))))
1910, 18syl 14 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))))
2019adantr 276 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))))
219, 20biimtrid 152 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))))
2221imp 124 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
23 swrdccatfn 11251 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
2422, 23syldan 282 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
25 fzmmmeqm 10250 . . . . . . 7 (𝑀 ∈ (𝐿...𝑁) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
2625oveq2d 6016 . . . . . 6 (𝑀 ∈ (𝐿...𝑁) → (0..^((𝑁𝐿) − (𝑀𝐿))) = (0..^(𝑁𝑀)))
2726fneq2d 5411 . . . . 5 (𝑀 ∈ (𝐿...𝑁) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀))))
2827ad2antrl 490 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀))))
2924, 28mpbird 167 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
30 simplr 528 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉)
31 elfzmlbm 10323 . . . . 5 (𝑀 ∈ (𝐿...𝑁) → (𝑀𝐿) ∈ (0...(𝑁𝐿)))
3231ad2antrl 490 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑀𝐿) ∈ (0...(𝑁𝐿)))
33 lencl 11070 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
3433nn0zd 9563 . . . . . . 7 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ)
3534adantl 277 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘𝐵) ∈ ℤ)
36 elfzmlbp 10324 . . . . . 6 (((♯‘𝐵) ∈ ℤ ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
3735, 36sylan 283 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
3837adantrl 478 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
39 swrdvalfn 11183 . . . 4 ((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
4030, 32, 38, 39syl3anc 1271 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
41 simpll 527 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
42 elfzelz 10217 . . . . . . . . . 10 (𝑀 ∈ (𝐿...𝑁) → 𝑀 ∈ ℤ)
43 zaddcl 9482 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
4443expcom 116 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
4542, 44syl 14 . . . . . . . . 9 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
4645ad2antrl 490 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
47 elfzoelz 10339 . . . . . . . 8 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → 𝑘 ∈ ℤ)
4846, 47impel 280 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝑘 + 𝑀) ∈ ℤ)
49 df-3an 1004 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑘 + 𝑀) ∈ ℤ))
5041, 48, 49sylanbrc 417 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ))
51 ccatsymb 11132 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴)))))
5250, 51syl 14 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴)))))
53 elfz2 10207 . . . . . . . . 9 (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)))
54 zre 9446 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
55 zre 9446 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5654, 55anim12i 338 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ))
57 elnn0z 9455 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
58 zre 9446 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
59 0re 8142 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
6059jctl 314 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (0 ∈ ℝ ∧ 𝐿 ∈ ℝ))
6160ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 ∈ ℝ ∧ 𝐿 ∈ ℝ))
62 id 19 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ))
6362adantrl 478 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ))
64 le2add 8587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) ∧ (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → (0 + 𝐿) ≤ (𝑘 + 𝑀)))
6561, 63, 64syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → (0 + 𝐿) ≤ (𝑘 + 𝑀)))
66 recn 8128 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
6766addlidd 8292 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (0 + 𝐿) = 𝐿)
6867ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 + 𝐿) = 𝐿)
6968breq1d 4092 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 + 𝐿) ≤ (𝑘 + 𝑀) ↔ 𝐿 ≤ (𝑘 + 𝑀)))
7065, 69sylibd 149 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → 𝐿 ≤ (𝑘 + 𝑀)))
71 simprl 529 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → 𝐿 ∈ ℝ)
72 readdcl 8121 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 + 𝑀) ∈ ℝ)
7372adantrl 478 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝑘 + 𝑀) ∈ ℝ)
7471, 73lenltd 8260 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝐿 ≤ (𝑘 + 𝑀) ↔ ¬ (𝑘 + 𝑀) < 𝐿))
7570, 74sylibd 149 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → ¬ (𝑘 + 𝑀) < 𝐿))
7675expd 258 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 ≤ 𝑘 → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
7776com12 30 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 𝑘 → ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
7877expd 258 . . . . . . . . . . . . . . . . . 18 (0 ≤ 𝑘 → (𝑘 ∈ ℝ → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))))
7958, 78mpan9 281 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 0 ≤ 𝑘) → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
8057, 79sylbi 121 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
8156, 80mpan9 281 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))
821breq2i 4090 . . . . . . . . . . . . . . . 16 ((𝑘 + 𝑀) < 𝐿 ↔ (𝑘 + 𝑀) < (♯‘𝐴))
8382notbii 672 . . . . . . . . . . . . . . 15 (¬ (𝑘 + 𝑀) < 𝐿 ↔ ¬ (𝑘 + 𝑀) < (♯‘𝐴))
8481, 83imbitrdi 161 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
8584ex 115 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < (♯‘𝐴))))
8685com23 78 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀 → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴))))
87863adant2 1040 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀 → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴))))
8887imp 124 . . . . . . . . . 10 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐿𝑀) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
8988adantrr 479 . . . . . . . . 9 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
9053, 89sylbi 121 . . . . . . . 8 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
9190ad2antrl 490 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (♯‘𝐴)))
92 elfzonn0 10382 . . . . . . 7 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → 𝑘 ∈ ℕ0)
9391, 92impel 280 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ¬ (𝑘 + 𝑀) < (♯‘𝐴))
9493iffalsed 3612 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → if((𝑘 + 𝑀) < (♯‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴)))) = (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴))))
95 zcn 9447 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
9695adantl 277 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
97 zcn 9447 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
9897ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ)
99 zcn 9447 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
10099ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝐿 ∈ ℂ)
10196, 98, 100addsubassd 8473 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − 𝐿) = (𝑘 + (𝑀𝐿)))
102 oveq2 6008 . . . . . . . . . . . . . . 15 (𝐿 = (♯‘𝐴) → ((𝑘 + 𝑀) − 𝐿) = ((𝑘 + 𝑀) − (♯‘𝐴)))
103102eqeq1d 2238 . . . . . . . . . . . . . 14 (𝐿 = (♯‘𝐴) → (((𝑘 + 𝑀) − 𝐿) = (𝑘 + (𝑀𝐿)) ↔ ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
104101, 103imbitrid 154 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝐴) → (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
1051, 104ax-mp 5 . . . . . . . . . . . 12 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿)))
106105ex 115 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
1071063adant2 1040 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
108107adantr 276 . . . . . . . . 9 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
10953, 108sylbi 121 . . . . . . . 8 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
110109ad2antrl 490 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿))))
111110, 47impel 280 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝑘 + 𝑀) − (♯‘𝐴)) = (𝑘 + (𝑀𝐿)))
112111fveq2d 5630 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐵‘((𝑘 + 𝑀) − (♯‘𝐴))) = (𝐵‘(𝑘 + (𝑀𝐿))))
11352, 94, 1123eqtrd 2266 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐵‘(𝑘 + (𝑀𝐿))))
114 ccatcl 11123 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
115114adantr 276 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
11611biimpi 120 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ (ℤ‘0))
1171, 116eqeltrid 2316 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (ℤ‘0))
118 fzss1 10255 . . . . . . . . 9 (𝐿 ∈ (ℤ‘0) → (𝐿...𝑁) ⊆ (0...𝑁))
11910, 117, 1183syl 17 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → (𝐿...𝑁) ⊆ (0...𝑁))
120119sselda 3224 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝑀 ∈ (𝐿...𝑁)) → 𝑀 ∈ (0...𝑁))
121120ad2ant2r 509 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝑁))
1221, 7ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))
12310, 116, 153syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵))))
124123adantr 276 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ⊆ (0...((♯‘𝐴) + (♯‘𝐵))))
125124sseld 3223 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
126125impcom 125 . . . . . . . . . . 11 ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))
127 ccatlen 11125 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
128127oveq2d 6016 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (0...(♯‘(𝐴 ++ 𝐵))) = (0...((♯‘𝐴) + (♯‘𝐵))))
129128eleq2d 2299 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))) ↔ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
130129adantl 277 . . . . . . . . . . 11 ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))) ↔ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵)))))
131126, 130mpbird 167 . . . . . . . . . 10 ((𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
132131ex 115 . . . . . . . . 9 (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
133122, 132sylbi 121 . . . . . . . 8 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
134133impcom 125 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
135134adantrl 478 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
136115, 121, 1353jca 1201 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
13726eleq2d 2299 . . . . . . 7 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ 𝑘 ∈ (0..^(𝑁𝑀))))
138137ad2antrl 490 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ 𝑘 ∈ (0..^(𝑁𝑀))))
139138biimpa 296 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → 𝑘 ∈ (0..^(𝑁𝑀)))
140 swrdfv 11180 . . . . 5 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
141136, 139, 140syl2an2r 597 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
14234, 36sylan 283 . . . . . . 7 ((𝐵 ∈ Word 𝑉𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
143142ad2ant2l 508 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
14430, 32, 1433jca 1201 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))))
145 swrdfv 11180 . . . . 5 (((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘) = (𝐵‘(𝑘 + (𝑀𝐿))))
146144, 145sylan 283 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘) = (𝐵‘(𝑘 + (𝑀𝐿))))
147113, 141, 1463eqtr4d 2272 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘))
14829, 40, 147eqfnfvd 5734 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
149148ex 115 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wss 3197  ifcif 3602  cop 3669   class class class wbr 4082   Fn wfn 5312  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995   + caddc 7998   < clt 8177  cle 8178  cmin 8313  0cn0 9365  cz 9442  cuz 9718  ...cfz 10200  ..^cfzo 10334  chash 10992  Word cword 11066   ++ cconcat 11120   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-substr 11173
This theorem is referenced by:  pfxccat3  11261  swrdccatin2d  11271
  Copyright terms: Public domain W3C validator