ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdpfx GIF version

Theorem swrdpfx 11166
Description: A subword of a prefix is a subword. (Contributed by Alexander van der Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
swrdpfx ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))

Proof of Theorem swrdpfx
StepHypRef Expression
1 elfznn0 10243 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℕ0)
21anim2i 342 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
32adantr 276 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0))
4 pfxval 11135 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
53, 4syl 14 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 prefix 𝑁) = (𝑊 substr ⟨0, 𝑁⟩))
65oveq1d 5966 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩))
7 simpl 109 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
8 simpr 110 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0...(♯‘𝑊)))
9 0elfz 10247 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
101, 9syl 14 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝑁))
1110adantl 277 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 0 ∈ (0...𝑁))
127, 8, 113jca 1180 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
1312adantr 276 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)))
14 elfzelz 10154 . . . . . . . . . 10 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ ℤ)
15 zcn 9384 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 8379 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716eqcomd 2212 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 = (𝑁 − 0))
1814, 17syl 14 . . . . . . . . 9 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 = (𝑁 − 0))
1918adantl 277 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 = (𝑁 − 0))
2019oveq2d 5967 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (0...𝑁) = (0...(𝑁 − 0)))
2120eleq2d 2276 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐾 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...(𝑁 − 0))))
2219oveq2d 5967 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐾...𝑁) = (𝐾...(𝑁 − 0)))
2322eleq2d 2276 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → (𝐿 ∈ (𝐾...𝑁) ↔ 𝐿 ∈ (𝐾...(𝑁 − 0))))
2421, 23anbi12d 473 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) ↔ (𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0)))))
2524biimpa 296 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0))))
26 swrdswrd 11164 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁 − 0)) ∧ 𝐿 ∈ (𝐾...(𝑁 − 0))) → ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩)))
2713, 25, 26sylc 62 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 substr ⟨0, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩))
28 elfzelz 10154 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
2928zcnd 9503 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
3029adantr 276 . . . . . . 7 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ ℂ)
3130adantl 277 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → 𝐾 ∈ ℂ)
3231addlidd 8229 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (0 + 𝐾) = 𝐾)
33 elfzelz 10154 . . . . . . . . 9 (𝐿 ∈ (𝐾...𝑁) → 𝐿 ∈ ℤ)
3433zcnd 9503 . . . . . . . 8 (𝐿 ∈ (𝐾...𝑁) → 𝐿 ∈ ℂ)
3534adantl 277 . . . . . . 7 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐿 ∈ ℂ)
3635adantl 277 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → 𝐿 ∈ ℂ)
3736addlidd 8229 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (0 + 𝐿) = 𝐿)
3832, 37opeq12d 3829 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ⟨(0 + 𝐾), (0 + 𝐿)⟩ = ⟨𝐾, 𝐿⟩)
3938oveq2d 5967 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → (𝑊 substr ⟨(0 + 𝐾), (0 + 𝐿)⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩))
406, 27, 393eqtrd 2243 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁))) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩))
4140ex 115 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  cop 3637  cfv 5276  (class class class)co 5951  cc 7930  0cc0 7932   + caddc 7935  cmin 8250  0cn0 9302  cz 9379  ...cfz 10137  chash 10927  Word cword 11001   substr csubstr 11106   prefix cpfx 11133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-fzo 10272  df-ihash 10928  df-word 11002  df-substr 11107  df-pfx 11134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator