Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcfaclem | GIF version |
Description: Lemma for pcfac 12280. (Contributed by Mario Carneiro, 20-May-2014.) |
Ref | Expression |
---|---|
pcfaclem | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ge0 9139 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
2 | 1 | 3ad2ant1 1008 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁) |
3 | nn0re 9123 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
4 | 3 | 3ad2ant1 1008 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ) |
5 | prmnn 12042 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 5 | 3ad2ant3 1010 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
7 | eluznn0 9537 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | |
8 | 7 | 3adant3 1007 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0) |
9 | 6, 8 | nnexpcld 10610 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℕ) |
10 | 9 | nnred 8870 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℝ) |
11 | 9 | nngt0d 8901 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃↑𝑀)) |
12 | ge0div 8766 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) | |
13 | 4, 10, 11, 12 | syl3anc 1228 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) |
14 | 2, 13 | mpbid 146 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃↑𝑀))) |
15 | 8 | nn0red 9168 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ) |
16 | eluzle 9478 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) | |
17 | 16 | 3ad2ant2 1009 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ≤ 𝑀) |
18 | prmuz2 12063 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
19 | 18 | 3ad2ant3 1010 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) |
20 | bernneq3 10577 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃↑𝑀)) | |
21 | 19, 8, 20 | syl2anc 409 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃↑𝑀)) |
22 | 4, 15, 10, 17, 21 | lelttrd 8023 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃↑𝑀)) |
23 | 9 | nncnd 8871 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℂ) |
24 | 23 | mulid1d 7916 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃↑𝑀) · 1) = (𝑃↑𝑀)) |
25 | 22, 24 | breqtrrd 4010 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃↑𝑀) · 1)) |
26 | 1red 7914 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ) | |
27 | ltdivmul 8771 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀))) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) | |
28 | 4, 26, 10, 11, 27 | syl112anc 1232 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) |
29 | 25, 28 | mpbird 166 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < 1) |
30 | 0p1e1 8971 | . . 3 ⊢ (0 + 1) = 1 | |
31 | 29, 30 | breqtrrdi 4024 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < (0 + 1)) |
32 | simp1 987 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0) | |
33 | 32 | nn0zd 9311 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ) |
34 | znq 9562 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑃↑𝑀) ∈ ℕ) → (𝑁 / (𝑃↑𝑀)) ∈ ℚ) | |
35 | 33, 9, 34 | syl2anc 409 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) ∈ ℚ) |
36 | 0z 9202 | . . 3 ⊢ 0 ∈ ℤ | |
37 | flqbi 10225 | . . 3 ⊢ (((𝑁 / (𝑃↑𝑀)) ∈ ℚ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) | |
38 | 35, 36, 37 | sylancl 410 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) |
39 | 14, 31, 38 | mpbir2and 934 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 < clt 7933 ≤ cle 7934 / cdiv 8568 ℕcn 8857 2c2 8908 ℕ0cn0 9114 ℤcz 9191 ℤ≥cuz 9466 ℚcq 9557 ⌊cfl 10203 ↑cexp 10454 ℙcprime 12039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fl 10205 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-prm 12040 |
This theorem is referenced by: pcfac 12280 |
Copyright terms: Public domain | W3C validator |