ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcfaclem GIF version

Theorem pcfaclem 12518
Description: Lemma for pcfac 12519. (Contributed by Mario Carneiro, 20-May-2014.)
Assertion
Ref Expression
pcfaclem ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)

Proof of Theorem pcfaclem
StepHypRef Expression
1 nn0ge0 9274 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
213ad2ant1 1020 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁)
3 nn0re 9258 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1020 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
5 prmnn 12278 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
653ad2ant3 1022 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
7 eluznn0 9673 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
873adant3 1019 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0)
96, 8nnexpcld 10787 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℕ)
109nnred 9003 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℝ)
119nngt0d 9034 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃𝑀))
12 ge0div 8898 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
134, 10, 11, 12syl3anc 1249 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
142, 13mpbid 147 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃𝑀)))
158nn0red 9303 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ)
16 eluzle 9613 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
17163ad2ant2 1021 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁𝑀)
18 prmuz2 12299 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
19183ad2ant3 1022 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
20 bernneq3 10754 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃𝑀))
2119, 8, 20syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃𝑀))
224, 15, 10, 17, 21lelttrd 8151 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃𝑀))
239nncnd 9004 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℂ)
2423mulridd 8043 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃𝑀) · 1) = (𝑃𝑀))
2522, 24breqtrrd 4061 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃𝑀) · 1))
26 1red 8041 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
27 ltdivmul 8903 . . . . 5 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀))) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
284, 26, 10, 11, 27syl112anc 1253 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
2925, 28mpbird 167 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < 1)
30 0p1e1 9104 . . 3 (0 + 1) = 1
3129, 30breqtrrdi 4075 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < (0 + 1))
32 simp1 999 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0)
3332nn0zd 9446 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ)
34 znq 9698 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑃𝑀) ∈ ℕ) → (𝑁 / (𝑃𝑀)) ∈ ℚ)
3533, 9, 34syl2anc 411 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) ∈ ℚ)
36 0z 9337 . . 3 0 ∈ ℤ
37 flqbi 10380 . . 3 (((𝑁 / (𝑃𝑀)) ∈ ℚ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3835, 36, 37sylancl 413 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3914, 31, 38mpbir2and 946 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062   / cdiv 8699  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601  cq 9693  cfl 10358  cexp 10630  cprime 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fl 10360  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-prm 12276
This theorem is referenced by:  pcfac  12519
  Copyright terms: Public domain W3C validator