ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcfaclem GIF version

Theorem pcfaclem 12361
Description: Lemma for pcfac 12362. (Contributed by Mario Carneiro, 20-May-2014.)
Assertion
Ref Expression
pcfaclem ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)

Proof of Theorem pcfaclem
StepHypRef Expression
1 nn0ge0 9215 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
213ad2ant1 1019 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁)
3 nn0re 9199 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1019 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
5 prmnn 12124 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
653ad2ant3 1021 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
7 eluznn0 9613 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
873adant3 1018 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0)
96, 8nnexpcld 10690 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℕ)
109nnred 8946 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℝ)
119nngt0d 8977 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃𝑀))
12 ge0div 8842 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
134, 10, 11, 12syl3anc 1248 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
142, 13mpbid 147 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃𝑀)))
158nn0red 9244 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ)
16 eluzle 9554 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
17163ad2ant2 1020 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁𝑀)
18 prmuz2 12145 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
19183ad2ant3 1021 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
20 bernneq3 10657 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃𝑀))
2119, 8, 20syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃𝑀))
224, 15, 10, 17, 21lelttrd 8096 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃𝑀))
239nncnd 8947 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℂ)
2423mulridd 7988 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃𝑀) · 1) = (𝑃𝑀))
2522, 24breqtrrd 4043 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃𝑀) · 1))
26 1red 7986 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
27 ltdivmul 8847 . . . . 5 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀))) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
284, 26, 10, 11, 27syl112anc 1252 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
2925, 28mpbird 167 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < 1)
30 0p1e1 9047 . . 3 (0 + 1) = 1
3129, 30breqtrrdi 4057 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < (0 + 1))
32 simp1 998 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0)
3332nn0zd 9387 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ)
34 znq 9638 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑃𝑀) ∈ ℕ) → (𝑁 / (𝑃𝑀)) ∈ ℚ)
3533, 9, 34syl2anc 411 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) ∈ ℚ)
36 0z 9278 . . 3 0 ∈ ℤ
37 flqbi 10304 . . 3 (((𝑁 / (𝑃𝑀)) ∈ ℚ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3835, 36, 37sylancl 413 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3914, 31, 38mpbir2and 945 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2158   class class class wbr 4015  cfv 5228  (class class class)co 5888  cr 7824  0cc0 7825  1c1 7826   + caddc 7828   · cmul 7830   < clt 8006  cle 8007   / cdiv 8643  cn 8933  2c2 8984  0cn0 9190  cz 9267  cuz 9542  cq 9633  cfl 10282  cexp 10533  cprime 12121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-1o 6431  df-2o 6432  df-er 6549  df-en 6755  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fl 10284  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-dvds 11809  df-prm 12122
This theorem is referenced by:  pcfac  12362
  Copyright terms: Public domain W3C validator