| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcfaclem | GIF version | ||
| Description: Lemma for pcfac 12748. (Contributed by Mario Carneiro, 20-May-2014.) |
| Ref | Expression |
|---|---|
| pcfaclem | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 9340 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 2 | 1 | 3ad2ant1 1021 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁) |
| 3 | nn0re 9324 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 4 | 3 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ) |
| 5 | prmnn 12507 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 6 | 5 | 3ad2ant3 1023 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
| 7 | eluznn0 9740 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | |
| 8 | 7 | 3adant3 1020 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0) |
| 9 | 6, 8 | nnexpcld 10862 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℕ) |
| 10 | 9 | nnred 9069 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℝ) |
| 11 | 9 | nngt0d 9100 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃↑𝑀)) |
| 12 | ge0div 8964 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) | |
| 13 | 4, 10, 11, 12 | syl3anc 1250 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) |
| 14 | 2, 13 | mpbid 147 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃↑𝑀))) |
| 15 | 8 | nn0red 9369 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ) |
| 16 | eluzle 9680 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) | |
| 17 | 16 | 3ad2ant2 1022 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ≤ 𝑀) |
| 18 | prmuz2 12528 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
| 19 | 18 | 3ad2ant3 1023 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) |
| 20 | bernneq3 10829 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃↑𝑀)) | |
| 21 | 19, 8, 20 | syl2anc 411 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃↑𝑀)) |
| 22 | 4, 15, 10, 17, 21 | lelttrd 8217 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃↑𝑀)) |
| 23 | 9 | nncnd 9070 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℂ) |
| 24 | 23 | mulridd 8109 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃↑𝑀) · 1) = (𝑃↑𝑀)) |
| 25 | 22, 24 | breqtrrd 4079 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃↑𝑀) · 1)) |
| 26 | 1red 8107 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ) | |
| 27 | ltdivmul 8969 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀))) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) | |
| 28 | 4, 26, 10, 11, 27 | syl112anc 1254 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) |
| 29 | 25, 28 | mpbird 167 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < 1) |
| 30 | 0p1e1 9170 | . . 3 ⊢ (0 + 1) = 1 | |
| 31 | 29, 30 | breqtrrdi 4093 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < (0 + 1)) |
| 32 | simp1 1000 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0) | |
| 33 | 32 | nn0zd 9513 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ) |
| 34 | znq 9765 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑃↑𝑀) ∈ ℕ) → (𝑁 / (𝑃↑𝑀)) ∈ ℚ) | |
| 35 | 33, 9, 34 | syl2anc 411 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) ∈ ℚ) |
| 36 | 0z 9403 | . . 3 ⊢ 0 ∈ ℤ | |
| 37 | flqbi 10455 | . . 3 ⊢ (((𝑁 / (𝑃↑𝑀)) ∈ ℚ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) | |
| 38 | 35, 36, 37 | sylancl 413 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) |
| 39 | 14, 31, 38 | mpbir2and 947 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 ℝcr 7944 0cc0 7945 1c1 7946 + caddc 7948 · cmul 7950 < clt 8127 ≤ cle 8128 / cdiv 8765 ℕcn 9056 2c2 9107 ℕ0cn0 9315 ℤcz 9392 ℤ≥cuz 9668 ℚcq 9760 ⌊cfl 10433 ↑cexp 10705 ℙcprime 12504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-1o 6515 df-2o 6516 df-er 6633 df-en 6841 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fl 10435 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-dvds 12174 df-prm 12505 |
| This theorem is referenced by: pcfac 12748 |
| Copyright terms: Public domain | W3C validator |