![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcfaclem | GIF version |
Description: Lemma for pcfac 12491. (Contributed by Mario Carneiro, 20-May-2014.) |
Ref | Expression |
---|---|
pcfaclem | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ge0 9268 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
2 | 1 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁) |
3 | nn0re 9252 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
4 | 3 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ) |
5 | prmnn 12251 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 5 | 3ad2ant3 1022 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
7 | eluznn0 9667 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | |
8 | 7 | 3adant3 1019 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0) |
9 | 6, 8 | nnexpcld 10769 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℕ) |
10 | 9 | nnred 8997 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℝ) |
11 | 9 | nngt0d 9028 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃↑𝑀)) |
12 | ge0div 8892 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) | |
13 | 4, 10, 11, 12 | syl3anc 1249 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃↑𝑀)))) |
14 | 2, 13 | mpbid 147 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃↑𝑀))) |
15 | 8 | nn0red 9297 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ) |
16 | eluzle 9607 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) | |
17 | 16 | 3ad2ant2 1021 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ≤ 𝑀) |
18 | prmuz2 12272 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
19 | 18 | 3ad2ant3 1022 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ≥‘2)) |
20 | bernneq3 10736 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃↑𝑀)) | |
21 | 19, 8, 20 | syl2anc 411 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃↑𝑀)) |
22 | 4, 15, 10, 17, 21 | lelttrd 8146 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃↑𝑀)) |
23 | 9 | nncnd 8998 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃↑𝑀) ∈ ℂ) |
24 | 23 | mulridd 8038 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃↑𝑀) · 1) = (𝑃↑𝑀)) |
25 | 22, 24 | breqtrrd 4058 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃↑𝑀) · 1)) |
26 | 1red 8036 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ) | |
27 | ltdivmul 8897 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃↑𝑀) ∈ ℝ ∧ 0 < (𝑃↑𝑀))) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) | |
28 | 4, 26, 10, 11, 27 | syl112anc 1253 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃↑𝑀)) < 1 ↔ 𝑁 < ((𝑃↑𝑀) · 1))) |
29 | 25, 28 | mpbird 167 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < 1) |
30 | 0p1e1 9098 | . . 3 ⊢ (0 + 1) = 1 | |
31 | 29, 30 | breqtrrdi 4072 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) < (0 + 1)) |
32 | simp1 999 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0) | |
33 | 32 | nn0zd 9440 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ) |
34 | znq 9692 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑃↑𝑀) ∈ ℕ) → (𝑁 / (𝑃↑𝑀)) ∈ ℚ) | |
35 | 33, 9, 34 | syl2anc 411 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃↑𝑀)) ∈ ℚ) |
36 | 0z 9331 | . . 3 ⊢ 0 ∈ ℤ | |
37 | flqbi 10362 | . . 3 ⊢ (((𝑁 / (𝑃↑𝑀)) ∈ ℚ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) | |
38 | 35, 36, 37 | sylancl 413 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃↑𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑀)) ∧ (𝑁 / (𝑃↑𝑀)) < (0 + 1)))) |
39 | 14, 31, 38 | mpbir2and 946 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 < clt 8056 ≤ cle 8057 / cdiv 8693 ℕcn 8984 2c2 9035 ℕ0cn0 9243 ℤcz 9320 ℤ≥cuz 9595 ℚcq 9687 ⌊cfl 10340 ↑cexp 10612 ℙcprime 12248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-1o 6471 df-2o 6472 df-er 6589 df-en 6797 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fl 10342 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-dvds 11934 df-prm 12249 |
This theorem is referenced by: pcfac 12491 |
Copyright terms: Public domain | W3C validator |