ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcfaclem GIF version

Theorem pcfaclem 12279
Description: Lemma for pcfac 12280. (Contributed by Mario Carneiro, 20-May-2014.)
Assertion
Ref Expression
pcfaclem ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)

Proof of Theorem pcfaclem
StepHypRef Expression
1 nn0ge0 9139 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
213ad2ant1 1008 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝑁)
3 nn0re 9123 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1008 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
5 prmnn 12042 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
653ad2ant3 1010 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
7 eluznn0 9537 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
873adant3 1007 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℕ0)
96, 8nnexpcld 10610 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℕ)
109nnred 8870 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℝ)
119nngt0d 8901 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 < (𝑃𝑀))
12 ge0div 8766 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
134, 10, 11, 12syl3anc 1228 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝑃𝑀))))
142, 13mpbid 146 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ (𝑁 / (𝑃𝑀)))
158nn0red 9168 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 ∈ ℝ)
16 eluzle 9478 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
17163ad2ant2 1009 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁𝑀)
18 prmuz2 12063 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
19183ad2ant3 1010 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
20 bernneq3 10577 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0) → 𝑀 < (𝑃𝑀))
2119, 8, 20syl2anc 409 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑀 < (𝑃𝑀))
224, 15, 10, 17, 21lelttrd 8023 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < (𝑃𝑀))
239nncnd 8871 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃𝑀) ∈ ℂ)
2423mulid1d 7916 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃𝑀) · 1) = (𝑃𝑀))
2522, 24breqtrrd 4010 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 < ((𝑃𝑀) · 1))
26 1red 7914 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
27 ltdivmul 8771 . . . . 5 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑀) ∈ ℝ ∧ 0 < (𝑃𝑀))) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
284, 26, 10, 11, 27syl112anc 1232 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑁 / (𝑃𝑀)) < 1 ↔ 𝑁 < ((𝑃𝑀) · 1)))
2925, 28mpbird 166 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < 1)
30 0p1e1 8971 . . 3 (0 + 1) = 1
3129, 30breqtrrdi 4024 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) < (0 + 1))
32 simp1 987 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0)
3332nn0zd 9311 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ)
34 znq 9562 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑃𝑀) ∈ ℕ) → (𝑁 / (𝑃𝑀)) ∈ ℚ)
3533, 9, 34syl2anc 409 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 / (𝑃𝑀)) ∈ ℚ)
36 0z 9202 . . 3 0 ∈ ℤ
37 flqbi 10225 . . 3 (((𝑁 / (𝑃𝑀)) ∈ ℚ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3835, 36, 37sylancl 410 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → ((⌊‘(𝑁 / (𝑃𝑀))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑀)) ∧ (𝑁 / (𝑃𝑀)) < (0 + 1))))
3914, 31, 38mpbir2and 934 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (⌊‘(𝑁 / (𝑃𝑀))) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934   / cdiv 8568  cn 8857  2c2 8908  0cn0 9114  cz 9191  cuz 9466  cq 9557  cfl 10203  cexp 10454  cprime 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fl 10205  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-prm 12040
This theorem is referenced by:  pcfac  12280
  Copyright terms: Public domain W3C validator