ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzenom GIF version

Theorem uzenom 10607
Description: An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
uzinf.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzenom (𝑀 ∈ ℤ → 𝑍 ≈ ω)

Proof of Theorem uzenom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
2 eqid 2207 . . . . 5 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀)
31, 2frec2uzf1od 10588 . . . 4 (𝑀 ∈ ℤ → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀):ω–1-1-onto→(ℤ𝑀))
4 omex 4659 . . . . 5 ω ∈ V
54f1oen 6873 . . . 4 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀):ω–1-1-onto→(ℤ𝑀) → ω ≈ (ℤ𝑀))
63, 5syl 14 . . 3 (𝑀 ∈ ℤ → ω ≈ (ℤ𝑀))
7 uzinf.1 . . 3 𝑍 = (ℤ𝑀)
86, 7breqtrrdi 4101 . 2 (𝑀 ∈ ℤ → ω ≈ 𝑍)
98ensymd 6898 1 (𝑀 ∈ ℤ → 𝑍 ≈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178   class class class wbr 4059  cmpt 4121  ωcom 4656  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  freccfrec 6499  cen 6848  1c1 7961   + caddc 7963  cz 9407  cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-er 6643  df-en 6851  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator