Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzenom | GIF version |
Description: An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
uzinf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzenom | ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
2 | eqid 2164 | . . . . 5 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀) | |
3 | 1, 2 | frec2uzf1od 10332 | . . . 4 ⊢ (𝑀 ∈ ℤ → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀):ω–1-1-onto→(ℤ≥‘𝑀)) |
4 | omex 4565 | . . . . 5 ⊢ ω ∈ V | |
5 | 4 | f1oen 6717 | . . . 4 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀):ω–1-1-onto→(ℤ≥‘𝑀) → ω ≈ (ℤ≥‘𝑀)) |
6 | 3, 5 | syl 14 | . . 3 ⊢ (𝑀 ∈ ℤ → ω ≈ (ℤ≥‘𝑀)) |
7 | uzinf.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
8 | 6, 7 | breqtrrdi 4019 | . 2 ⊢ (𝑀 ∈ ℤ → ω ≈ 𝑍) |
9 | 8 | ensymd 6741 | 1 ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 class class class wbr 3977 ↦ cmpt 4038 ωcom 4562 –1-1-onto→wf1o 5182 ‘cfv 5183 (class class class)co 5837 freccfrec 6350 ≈ cen 6696 1c1 7746 + caddc 7748 ℤcz 9183 ℤ≥cuz 9458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-iord 4339 df-on 4341 df-ilim 4342 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-recs 6265 df-frec 6351 df-er 6493 df-en 6699 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |