ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumfct GIF version

Theorem sumfct 11627
Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
Assertion
Ref Expression
sumfct (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumfct
StepHypRef Expression
1 simpr 110 . . . 4 ((∀𝑘𝐴 𝐵 ∈ ℂ ∧ 𝑗𝐴) → 𝑗𝐴)
2 nfcsb1v 3125 . . . . . . 7 𝑘𝑗 / 𝑘𝐵
32nfel1 2358 . . . . . 6 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
4 csbeq1a 3101 . . . . . . 7 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
54eleq1d 2273 . . . . . 6 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
63, 5rspc 2870 . . . . 5 (𝑗𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑗 / 𝑘𝐵 ∈ ℂ))
76impcom 125 . . . 4 ((∀𝑘𝐴 𝐵 ∈ ℂ ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
8 eqid 2204 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
98fvmpts 5656 . . . 4 ((𝑗𝐴𝑗 / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
101, 7, 9syl2anc 411 . . 3 ((∀𝑘𝐴 𝐵 ∈ ℂ ∧ 𝑗𝐴) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
1110sumeq2dv 11621 . 2 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑗𝐴 𝑗 / 𝑘𝐵)
12 nfcv 2347 . . 3 𝑗𝐵
1312, 2, 4cbvsumi 11615 . 2 Σ𝑘𝐴 𝐵 = Σ𝑗𝐴 𝑗 / 𝑘𝐵
1411, 13eqtr4di 2255 1 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wral 2483  csb 3092  cmpt 4104  cfv 5270  cc 7922  Σcsu 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-seqfrec 10591  df-sumdc 11607
This theorem is referenced by:  fsumf1o  11643  isumss  11644  fisumss  11645  fsumcl2lem  11651  fsumadd  11659  isumclim3  11676  isummulc2  11679  fsummulc2  11701  isumshft  11743
  Copyright terms: Public domain W3C validator