Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumfct | GIF version |
Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.) |
Ref | Expression |
---|---|
sumfct | ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → Σ𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
2 | nfcsb1v 3074 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
3 | 2 | nfel1 2317 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
4 | csbeq1a 3050 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
5 | 4 | eleq1d 2233 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
6 | 3, 5 | rspc 2820 | . . . . 5 ⊢ (𝑗 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
7 | 6 | impcom 124 | . . . 4 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
8 | eqid 2164 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
9 | 8 | fvmpts 5559 | . . . 4 ⊢ ((𝑗 ∈ 𝐴 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
10 | 1, 7, 9 | syl2anc 409 | . . 3 ⊢ ((∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ ∧ 𝑗 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
11 | 10 | sumeq2dv 11299 | . 2 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → Σ𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
12 | nfcv 2306 | . . 3 ⊢ Ⅎ𝑗𝐵 | |
13 | 12, 2, 4 | cbvsumi 11293 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
14 | 11, 13 | eqtr4di 2215 | 1 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → Σ𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1342 ∈ wcel 2135 ∀wral 2442 ⦋csb 3041 ↦ cmpt 4038 ‘cfv 5183 ℂcc 7743 Σcsu 11284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-if 3517 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-recs 6265 df-frec 6351 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 df-fz 9937 df-seqfrec 10372 df-sumdc 11285 |
This theorem is referenced by: fsumf1o 11321 isumss 11322 fisumss 11323 fsumcl2lem 11329 fsumadd 11337 isumclim3 11354 isummulc2 11357 fsummulc2 11379 isumshft 11421 |
Copyright terms: Public domain | W3C validator |