Step | Hyp | Ref
| Expression |
1 | | psmetf 14096 |
. . 3
β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆβ*) |
2 | 1 | ffnd 5378 |
. 2
β’ (π· β (PsMetβπ) β π· Fn (π Γ π)) |
3 | 1 | ffvelcdmda 5664 |
. . . . 5
β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β (π·βπ) β
β*) |
4 | | elxp6 6183 |
. . . . . . . 8
β’ (π β (π Γ π) β (π = β¨(1st βπ), (2nd βπ)β© β§ ((1st
βπ) β π β§ (2nd
βπ) β π))) |
5 | 4 | simprbi 275 |
. . . . . . 7
β’ (π β (π Γ π) β ((1st βπ) β π β§ (2nd βπ) β π)) |
6 | | psmetge0 14102 |
. . . . . . . 8
β’ ((π· β (PsMetβπ) β§ (1st
βπ) β π β§ (2nd
βπ) β π) β 0 β€ ((1st
βπ)π·(2nd βπ))) |
7 | 6 | 3expb 1205 |
. . . . . . 7
β’ ((π· β (PsMetβπ) β§ ((1st
βπ) β π β§ (2nd
βπ) β π)) β 0 β€
((1st βπ)π·(2nd βπ))) |
8 | 5, 7 | sylan2 286 |
. . . . . 6
β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β 0 β€ ((1st
βπ)π·(2nd βπ))) |
9 | | 1st2nd2 6189 |
. . . . . . . . 9
β’ (π β (π Γ π) β π = β¨(1st βπ), (2nd βπ)β©) |
10 | 9 | fveq2d 5531 |
. . . . . . . 8
β’ (π β (π Γ π) β (π·βπ) = (π·ββ¨(1st βπ), (2nd βπ)β©)) |
11 | | df-ov 5891 |
. . . . . . . 8
β’
((1st βπ)π·(2nd βπ)) = (π·ββ¨(1st βπ), (2nd βπ)β©) |
12 | 10, 11 | eqtr4di 2238 |
. . . . . . 7
β’ (π β (π Γ π) β (π·βπ) = ((1st βπ)π·(2nd βπ))) |
13 | 12 | adantl 277 |
. . . . . 6
β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β (π·βπ) = ((1st βπ)π·(2nd βπ))) |
14 | 8, 13 | breqtrrd 4043 |
. . . . 5
β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β 0 β€ (π·βπ)) |
15 | | elxrge0 9991 |
. . . . 5
β’ ((π·βπ) β (0[,]+β) β ((π·βπ) β β* β§ 0 β€
(π·βπ))) |
16 | 3, 14, 15 | sylanbrc 417 |
. . . 4
β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β (π·βπ) β (0[,]+β)) |
17 | 16 | ralrimiva 2560 |
. . 3
β’ (π· β (PsMetβπ) β βπ β (π Γ π)(π·βπ) β (0[,]+β)) |
18 | | fnfvrnss 5689 |
. . 3
β’ ((π· Fn (π Γ π) β§ βπ β (π Γ π)(π·βπ) β (0[,]+β)) β ran π· β
(0[,]+β)) |
19 | 2, 17, 18 | syl2anc 411 |
. 2
β’ (π· β (PsMetβπ) β ran π· β (0[,]+β)) |
20 | | df-f 5232 |
. 2
β’ (π·:(π Γ π)βΆ(0[,]+β) β (π· Fn (π Γ π) β§ ran π· β (0[,]+β))) |
21 | 2, 19, 20 | sylanbrc 417 |
1
β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆ(0[,]+β)) |