ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetxrge0 GIF version

Theorem psmetxrge0 14235
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
psmetxrge0 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞))

Proof of Theorem psmetxrge0
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 psmetf 14228 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
21ffnd 5381 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷 Fn (𝑋 Γ— 𝑋))
31ffvelcdmda 5667 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ (π·β€˜π‘Ž) ∈ ℝ*)
4 elxp6 6188 . . . . . . . 8 (π‘Ž ∈ (𝑋 Γ— 𝑋) ↔ (π‘Ž = ⟨(1st β€˜π‘Ž), (2nd β€˜π‘Ž)⟩ ∧ ((1st β€˜π‘Ž) ∈ 𝑋 ∧ (2nd β€˜π‘Ž) ∈ 𝑋)))
54simprbi 275 . . . . . . 7 (π‘Ž ∈ (𝑋 Γ— 𝑋) β†’ ((1st β€˜π‘Ž) ∈ 𝑋 ∧ (2nd β€˜π‘Ž) ∈ 𝑋))
6 psmetge0 14234 . . . . . . . 8 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (1st β€˜π‘Ž) ∈ 𝑋 ∧ (2nd β€˜π‘Ž) ∈ 𝑋) β†’ 0 ≀ ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
763expb 1206 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ ((1st β€˜π‘Ž) ∈ 𝑋 ∧ (2nd β€˜π‘Ž) ∈ 𝑋)) β†’ 0 ≀ ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
85, 7sylan2 286 . . . . . 6 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ 0 ≀ ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
9 1st2nd2 6194 . . . . . . . . 9 (π‘Ž ∈ (𝑋 Γ— 𝑋) β†’ π‘Ž = ⟨(1st β€˜π‘Ž), (2nd β€˜π‘Ž)⟩)
109fveq2d 5534 . . . . . . . 8 (π‘Ž ∈ (𝑋 Γ— 𝑋) β†’ (π·β€˜π‘Ž) = (π·β€˜βŸ¨(1st β€˜π‘Ž), (2nd β€˜π‘Ž)⟩))
11 df-ov 5894 . . . . . . . 8 ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)) = (π·β€˜βŸ¨(1st β€˜π‘Ž), (2nd β€˜π‘Ž)⟩)
1210, 11eqtr4di 2240 . . . . . . 7 (π‘Ž ∈ (𝑋 Γ— 𝑋) β†’ (π·β€˜π‘Ž) = ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
1312adantl 277 . . . . . 6 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ (π·β€˜π‘Ž) = ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
148, 13breqtrrd 4046 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ 0 ≀ (π·β€˜π‘Ž))
15 elxrge0 9997 . . . . 5 ((π·β€˜π‘Ž) ∈ (0[,]+∞) ↔ ((π·β€˜π‘Ž) ∈ ℝ* ∧ 0 ≀ (π·β€˜π‘Ž)))
163, 14, 15sylanbrc 417 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ (π·β€˜π‘Ž) ∈ (0[,]+∞))
1716ralrimiva 2563 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆ€π‘Ž ∈ (𝑋 Γ— 𝑋)(π·β€˜π‘Ž) ∈ (0[,]+∞))
18 fnfvrnss 5692 . . 3 ((𝐷 Fn (𝑋 Γ— 𝑋) ∧ βˆ€π‘Ž ∈ (𝑋 Γ— 𝑋)(π·β€˜π‘Ž) ∈ (0[,]+∞)) β†’ ran 𝐷 βŠ† (0[,]+∞))
192, 17, 18syl2anc 411 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ ran 𝐷 βŠ† (0[,]+∞))
20 df-f 5235 . 2 (𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞) ↔ (𝐷 Fn (𝑋 Γ— 𝑋) ∧ ran 𝐷 βŠ† (0[,]+∞)))
212, 19, 20sylanbrc 417 1 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1364   ∈ wcel 2160  βˆ€wral 2468   βŠ† wss 3144  βŸ¨cop 3610   class class class wbr 4018   Γ— cxp 4639  ran crn 4642   Fn wfn 5226  βŸΆwf 5227  β€˜cfv 5231  (class class class)co 5891  1st c1st 6157  2nd c2nd 6158  0cc0 7830  +∞cpnf 8008  β„*cxr 8010   ≀ cle 8012  [,]cicc 9910  PsMetcpsmet 13815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-lttrn 7944  ax-pre-ltadd 7946  ax-pre-mulgt0 7947
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-map 6668  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-2 8997  df-xadd 9792  df-icc 9914  df-psmet 13823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator