| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetxrge0 | GIF version | ||
| Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetxrge0 | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf 14847 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | 1 | ffnd 5433 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 Fn (𝑋 × 𝑋)) |
| 3 | 1 | ffvelcdmda 5725 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ ℝ*) |
| 4 | elxp6 6265 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) ↔ (𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉 ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋))) | |
| 5 | 4 | simprbi 275 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) |
| 6 | psmetge0 14853 | . . . . . . . 8 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) | |
| 7 | 6 | 3expb 1207 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 8 | 5, 7 | sylan2 286 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 9 | 1st2nd2 6271 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → 𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
| 10 | 9 | fveq2d 5590 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉)) |
| 11 | df-ov 5957 | . . . . . . . 8 ⊢ ((1st ‘𝑎)𝐷(2nd ‘𝑎)) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
| 12 | 10, 11 | eqtr4di 2257 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 13 | 12 | adantl 277 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 14 | 8, 13 | breqtrrd 4076 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ (𝐷‘𝑎)) |
| 15 | elxrge0 10113 | . . . . 5 ⊢ ((𝐷‘𝑎) ∈ (0[,]+∞) ↔ ((𝐷‘𝑎) ∈ ℝ* ∧ 0 ≤ (𝐷‘𝑎))) | |
| 16 | 3, 14, 15 | sylanbrc 417 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ (0[,]+∞)) |
| 17 | 16 | ralrimiva 2580 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) |
| 18 | fnfvrnss 5750 | . . 3 ⊢ ((𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) → ran 𝐷 ⊆ (0[,]+∞)) | |
| 19 | 2, 17, 18 | syl2anc 411 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ran 𝐷 ⊆ (0[,]+∞)) |
| 20 | df-f 5281 | . 2 ⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ran 𝐷 ⊆ (0[,]+∞))) | |
| 21 | 2, 19, 20 | sylanbrc 417 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3168 〈cop 3638 class class class wbr 4048 × cxp 4678 ran crn 4681 Fn wfn 5272 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 1st c1st 6234 2nd c2nd 6235 0cc0 7938 +∞cpnf 8117 ℝ*cxr 8119 ≤ cle 8121 [,]cicc 10026 PsMetcpsmet 14347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-lttrn 8052 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-map 6747 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-2 9108 df-xadd 9908 df-icc 10030 df-psmet 14355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |