ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetxrge0 GIF version

Theorem psmetxrge0 14568
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
psmetxrge0 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))

Proof of Theorem psmetxrge0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 psmetf 14561 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
21ffnd 5408 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 Fn (𝑋 × 𝑋))
31ffvelcdmda 5697 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) ∈ ℝ*)
4 elxp6 6227 . . . . . . . 8 (𝑎 ∈ (𝑋 × 𝑋) ↔ (𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩ ∧ ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋)))
54simprbi 275 . . . . . . 7 (𝑎 ∈ (𝑋 × 𝑋) → ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋))
6 psmetge0 14567 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
763expb 1206 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋)) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
85, 7sylan2 286 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
9 1st2nd2 6233 . . . . . . . . 9 (𝑎 ∈ (𝑋 × 𝑋) → 𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩)
109fveq2d 5562 . . . . . . . 8 (𝑎 ∈ (𝑋 × 𝑋) → (𝐷𝑎) = (𝐷‘⟨(1st𝑎), (2nd𝑎)⟩))
11 df-ov 5925 . . . . . . . 8 ((1st𝑎)𝐷(2nd𝑎)) = (𝐷‘⟨(1st𝑎), (2nd𝑎)⟩)
1210, 11eqtr4di 2247 . . . . . . 7 (𝑎 ∈ (𝑋 × 𝑋) → (𝐷𝑎) = ((1st𝑎)𝐷(2nd𝑎)))
1312adantl 277 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) = ((1st𝑎)𝐷(2nd𝑎)))
148, 13breqtrrd 4061 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ (𝐷𝑎))
15 elxrge0 10053 . . . . 5 ((𝐷𝑎) ∈ (0[,]+∞) ↔ ((𝐷𝑎) ∈ ℝ* ∧ 0 ≤ (𝐷𝑎)))
163, 14, 15sylanbrc 417 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) ∈ (0[,]+∞))
1716ralrimiva 2570 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷𝑎) ∈ (0[,]+∞))
18 fnfvrnss 5722 . . 3 ((𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷𝑎) ∈ (0[,]+∞)) → ran 𝐷 ⊆ (0[,]+∞))
192, 17, 18syl2anc 411 . 2 (𝐷 ∈ (PsMet‘𝑋) → ran 𝐷 ⊆ (0[,]+∞))
20 df-f 5262 . 2 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ran 𝐷 ⊆ (0[,]+∞)))
212, 19, 20sylanbrc 417 1 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wss 3157  cop 3625   class class class wbr 4033   × cxp 4661  ran crn 4664   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  0cc0 7879  +∞cpnf 8058  *cxr 8060  cle 8062  [,]cicc 9966  PsMetcpsmet 14091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-2 9049  df-xadd 9848  df-icc 9970  df-psmet 14099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator