ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetxrge0 GIF version

Theorem psmetxrge0 12972
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
psmetxrge0 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))

Proof of Theorem psmetxrge0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 psmetf 12965 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
21ffnd 5338 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 Fn (𝑋 × 𝑋))
31ffvelrnda 5620 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) ∈ ℝ*)
4 elxp6 6137 . . . . . . . 8 (𝑎 ∈ (𝑋 × 𝑋) ↔ (𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩ ∧ ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋)))
54simprbi 273 . . . . . . 7 (𝑎 ∈ (𝑋 × 𝑋) → ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋))
6 psmetge0 12971 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
763expb 1194 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ ((1st𝑎) ∈ 𝑋 ∧ (2nd𝑎) ∈ 𝑋)) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
85, 7sylan2 284 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ ((1st𝑎)𝐷(2nd𝑎)))
9 1st2nd2 6143 . . . . . . . . 9 (𝑎 ∈ (𝑋 × 𝑋) → 𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩)
109fveq2d 5490 . . . . . . . 8 (𝑎 ∈ (𝑋 × 𝑋) → (𝐷𝑎) = (𝐷‘⟨(1st𝑎), (2nd𝑎)⟩))
11 df-ov 5845 . . . . . . . 8 ((1st𝑎)𝐷(2nd𝑎)) = (𝐷‘⟨(1st𝑎), (2nd𝑎)⟩)
1210, 11eqtr4di 2217 . . . . . . 7 (𝑎 ∈ (𝑋 × 𝑋) → (𝐷𝑎) = ((1st𝑎)𝐷(2nd𝑎)))
1312adantl 275 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) = ((1st𝑎)𝐷(2nd𝑎)))
148, 13breqtrrd 4010 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ (𝐷𝑎))
15 elxrge0 9914 . . . . 5 ((𝐷𝑎) ∈ (0[,]+∞) ↔ ((𝐷𝑎) ∈ ℝ* ∧ 0 ≤ (𝐷𝑎)))
163, 14, 15sylanbrc 414 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷𝑎) ∈ (0[,]+∞))
1716ralrimiva 2539 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷𝑎) ∈ (0[,]+∞))
18 fnfvrnss 5645 . . 3 ((𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷𝑎) ∈ (0[,]+∞)) → ran 𝐷 ⊆ (0[,]+∞))
192, 17, 18syl2anc 409 . 2 (𝐷 ∈ (PsMet‘𝑋) → ran 𝐷 ⊆ (0[,]+∞))
20 df-f 5192 . 2 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ran 𝐷 ⊆ (0[,]+∞)))
212, 19, 20sylanbrc 414 1 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  wss 3116  cop 3579   class class class wbr 3982   × cxp 4602  ran crn 4605   Fn wfn 5183  wf 5184  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  0cc0 7753  +∞cpnf 7930  *cxr 7932  cle 7934  [,]cicc 9827  PsMetcpsmet 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-lttrn 7867  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-2 8916  df-xadd 9709  df-icc 9831  df-psmet 12627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator