| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetxrge0 | GIF version | ||
| Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetxrge0 | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf 14984 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | 1 | ffnd 5470 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 Fn (𝑋 × 𝑋)) |
| 3 | 1 | ffvelcdmda 5763 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ ℝ*) |
| 4 | elxp6 6305 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) ↔ (𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉 ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋))) | |
| 5 | 4 | simprbi 275 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) |
| 6 | psmetge0 14990 | . . . . . . . 8 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) | |
| 7 | 6 | 3expb 1228 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 8 | 5, 7 | sylan2 286 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 9 | 1st2nd2 6311 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → 𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
| 10 | 9 | fveq2d 5627 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉)) |
| 11 | df-ov 5997 | . . . . . . . 8 ⊢ ((1st ‘𝑎)𝐷(2nd ‘𝑎)) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
| 12 | 10, 11 | eqtr4di 2280 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 13 | 12 | adantl 277 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 14 | 8, 13 | breqtrrd 4110 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ (𝐷‘𝑎)) |
| 15 | elxrge0 10162 | . . . . 5 ⊢ ((𝐷‘𝑎) ∈ (0[,]+∞) ↔ ((𝐷‘𝑎) ∈ ℝ* ∧ 0 ≤ (𝐷‘𝑎))) | |
| 16 | 3, 14, 15 | sylanbrc 417 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ (0[,]+∞)) |
| 17 | 16 | ralrimiva 2603 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) |
| 18 | fnfvrnss 5788 | . . 3 ⊢ ((𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) → ran 𝐷 ⊆ (0[,]+∞)) | |
| 19 | 2, 17, 18 | syl2anc 411 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ran 𝐷 ⊆ (0[,]+∞)) |
| 20 | df-f 5318 | . 2 ⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ran 𝐷 ⊆ (0[,]+∞))) | |
| 21 | 2, 19, 20 | sylanbrc 417 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 〈cop 3669 class class class wbr 4082 × cxp 4714 ran crn 4717 Fn wfn 5309 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 1st c1st 6274 2nd c2nd 6275 0cc0 7987 +∞cpnf 8166 ℝ*cxr 8168 ≤ cle 8170 [,]cicc 10075 PsMetcpsmet 14484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-lttrn 8101 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-2 9157 df-xadd 9957 df-icc 10079 df-psmet 14492 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |