ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetxrge0 GIF version

Theorem psmetxrge0 14103
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
psmetxrge0 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞))

Proof of Theorem psmetxrge0
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 psmetf 14096 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
21ffnd 5378 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷 Fn (𝑋 Γ— 𝑋))
31ffvelcdmda 5664 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ (π·β€˜π‘Ž) ∈ ℝ*)
4 elxp6 6183 . . . . . . . 8 (π‘Ž ∈ (𝑋 Γ— 𝑋) ↔ (π‘Ž = ⟨(1st β€˜π‘Ž), (2nd β€˜π‘Ž)⟩ ∧ ((1st β€˜π‘Ž) ∈ 𝑋 ∧ (2nd β€˜π‘Ž) ∈ 𝑋)))
54simprbi 275 . . . . . . 7 (π‘Ž ∈ (𝑋 Γ— 𝑋) β†’ ((1st β€˜π‘Ž) ∈ 𝑋 ∧ (2nd β€˜π‘Ž) ∈ 𝑋))
6 psmetge0 14102 . . . . . . . 8 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (1st β€˜π‘Ž) ∈ 𝑋 ∧ (2nd β€˜π‘Ž) ∈ 𝑋) β†’ 0 ≀ ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
763expb 1205 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ ((1st β€˜π‘Ž) ∈ 𝑋 ∧ (2nd β€˜π‘Ž) ∈ 𝑋)) β†’ 0 ≀ ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
85, 7sylan2 286 . . . . . 6 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ 0 ≀ ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
9 1st2nd2 6189 . . . . . . . . 9 (π‘Ž ∈ (𝑋 Γ— 𝑋) β†’ π‘Ž = ⟨(1st β€˜π‘Ž), (2nd β€˜π‘Ž)⟩)
109fveq2d 5531 . . . . . . . 8 (π‘Ž ∈ (𝑋 Γ— 𝑋) β†’ (π·β€˜π‘Ž) = (π·β€˜βŸ¨(1st β€˜π‘Ž), (2nd β€˜π‘Ž)⟩))
11 df-ov 5891 . . . . . . . 8 ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)) = (π·β€˜βŸ¨(1st β€˜π‘Ž), (2nd β€˜π‘Ž)⟩)
1210, 11eqtr4di 2238 . . . . . . 7 (π‘Ž ∈ (𝑋 Γ— 𝑋) β†’ (π·β€˜π‘Ž) = ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
1312adantl 277 . . . . . 6 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ (π·β€˜π‘Ž) = ((1st β€˜π‘Ž)𝐷(2nd β€˜π‘Ž)))
148, 13breqtrrd 4043 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ 0 ≀ (π·β€˜π‘Ž))
15 elxrge0 9991 . . . . 5 ((π·β€˜π‘Ž) ∈ (0[,]+∞) ↔ ((π·β€˜π‘Ž) ∈ ℝ* ∧ 0 ≀ (π·β€˜π‘Ž)))
163, 14, 15sylanbrc 417 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ (𝑋 Γ— 𝑋)) β†’ (π·β€˜π‘Ž) ∈ (0[,]+∞))
1716ralrimiva 2560 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆ€π‘Ž ∈ (𝑋 Γ— 𝑋)(π·β€˜π‘Ž) ∈ (0[,]+∞))
18 fnfvrnss 5689 . . 3 ((𝐷 Fn (𝑋 Γ— 𝑋) ∧ βˆ€π‘Ž ∈ (𝑋 Γ— 𝑋)(π·β€˜π‘Ž) ∈ (0[,]+∞)) β†’ ran 𝐷 βŠ† (0[,]+∞))
192, 17, 18syl2anc 411 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ ran 𝐷 βŠ† (0[,]+∞))
20 df-f 5232 . 2 (𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞) ↔ (𝐷 Fn (𝑋 Γ— 𝑋) ∧ ran 𝐷 βŠ† (0[,]+∞)))
212, 19, 20sylanbrc 417 1 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)⟢(0[,]+∞))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1363   ∈ wcel 2158  βˆ€wral 2465   βŠ† wss 3141  βŸ¨cop 3607   class class class wbr 4015   Γ— cxp 4636  ran crn 4639   Fn wfn 5223  βŸΆwf 5224  β€˜cfv 5228  (class class class)co 5888  1st c1st 6152  2nd c2nd 6153  0cc0 7824  +∞cpnf 8002  β„*cxr 8004   ≀ cle 8006  [,]cicc 9904  PsMetcpsmet 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940  ax-pre-mulgt0 7941
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-map 6663  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-2 8991  df-xadd 9786  df-icc 9908  df-psmet 13704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator