ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptaddx GIF version

Theorem dvmptaddx 15109
Description: Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptclx.ss (𝜑𝑋𝑆)
dvmptadd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptadd.d ((𝜑𝑥𝑋) → 𝐷𝑊)
dvmptadd.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptaddx (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvmptaddx
StepHypRef Expression
1 dvmptadd.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptclx.ss . . 3 (𝜑𝑋𝑆)
3 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
43fmpttd 5729 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
5 dvmptadd.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
65fmpttd 5729 . . 3 (𝜑 → (𝑥𝑋𝐶):𝑋⟶ℂ)
7 dvmptadd.da . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
87dmeqd 4878 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
9 dvmptadd.b . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑉)
109ralrimiva 2578 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
11 dmmptg 5177 . . . . 5 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1210, 11syl 14 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
138, 12eqtrd 2237 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
14 dvmptadd.dc . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
1514dmeqd 4878 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = dom (𝑥𝑋𝐷))
16 dvmptadd.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷𝑊)
1716ralrimiva 2578 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐷𝑊)
18 dmmptg 5177 . . . . 5 (∀𝑥𝑋 𝐷𝑊 → dom (𝑥𝑋𝐷) = 𝑋)
1917, 18syl 14 . . . 4 (𝜑 → dom (𝑥𝑋𝐷) = 𝑋)
2015, 19eqtrd 2237 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = 𝑋)
211, 2, 4, 6, 13, 20dviaddf 15095 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶))) = ((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 + (𝑆 D (𝑥𝑋𝐶))))
221, 2ssexd 4183 . . . 4 (𝜑𝑋 ∈ V)
23 eqidd 2205 . . . 4 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
24 eqidd 2205 . . . 4 (𝜑 → (𝑥𝑋𝐶) = (𝑥𝑋𝐶))
2522, 3, 5, 23, 24offval2 6164 . . 3 (𝜑 → ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ (𝐴 + 𝐶)))
2625oveq2d 5950 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))))
2722, 9, 16, 7, 14offval2 6164 . 2 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 + (𝑆 D (𝑥𝑋𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
2821, 26, 273eqtr3d 2245 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  wss 3165  {cpr 3633  cmpt 4104  dom cdm 4673  (class class class)co 5934  𝑓 cof 6146  cc 7905  cr 7906   + caddc 7910   D cdv 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027  ax-addf 8029
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-of 6148  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-map 6727  df-pm 6728  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-xneg 9876  df-xadd 9877  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-rest 12991  df-topgen 13010  df-psmet 14223  df-xmet 14224  df-met 14225  df-bl 14226  df-mopn 14227  df-top 14388  df-topon 14401  df-bases 14433  df-ntr 14486  df-cn 14578  df-cnp 14579  df-tx 14643  df-limced 15046  df-dvap 15047
This theorem is referenced by:  dvmptsubcn  15113  dvmptfsum  15115
  Copyright terms: Public domain W3C validator