ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptaddx GIF version

Theorem dvmptaddx 15387
Description: Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptclx.ss (𝜑𝑋𝑆)
dvmptadd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptadd.d ((𝜑𝑥𝑋) → 𝐷𝑊)
dvmptadd.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptaddx (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvmptaddx
StepHypRef Expression
1 dvmptadd.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptclx.ss . . 3 (𝜑𝑋𝑆)
3 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
43fmpttd 5789 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
5 dvmptadd.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
65fmpttd 5789 . . 3 (𝜑 → (𝑥𝑋𝐶):𝑋⟶ℂ)
7 dvmptadd.da . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
87dmeqd 4924 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
9 dvmptadd.b . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑉)
109ralrimiva 2603 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
11 dmmptg 5225 . . . . 5 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1210, 11syl 14 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
138, 12eqtrd 2262 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
14 dvmptadd.dc . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
1514dmeqd 4924 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = dom (𝑥𝑋𝐷))
16 dvmptadd.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷𝑊)
1716ralrimiva 2603 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐷𝑊)
18 dmmptg 5225 . . . . 5 (∀𝑥𝑋 𝐷𝑊 → dom (𝑥𝑋𝐷) = 𝑋)
1917, 18syl 14 . . . 4 (𝜑 → dom (𝑥𝑋𝐷) = 𝑋)
2015, 19eqtrd 2262 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = 𝑋)
211, 2, 4, 6, 13, 20dviaddf 15373 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶))) = ((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 + (𝑆 D (𝑥𝑋𝐶))))
221, 2ssexd 4223 . . . 4 (𝜑𝑋 ∈ V)
23 eqidd 2230 . . . 4 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
24 eqidd 2230 . . . 4 (𝜑 → (𝑥𝑋𝐶) = (𝑥𝑋𝐶))
2522, 3, 5, 23, 24offval2 6232 . . 3 (𝜑 → ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ (𝐴 + 𝐶)))
2625oveq2d 6016 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))))
2722, 9, 16, 7, 14offval2 6232 . 2 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 + (𝑆 D (𝑥𝑋𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
2821, 26, 273eqtr3d 2270 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  wss 3197  {cpr 3667  cmpt 4144  dom cdm 4718  (class class class)co 6000  𝑓 cof 6214  cc 7993  cr 7994   + caddc 7998   D cdv 15323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-addf 8117
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-pm 6796  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-limced 15324  df-dvap 15325
This theorem is referenced by:  dvmptsubcn  15391  dvmptfsum  15393
  Copyright terms: Public domain W3C validator