Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvmptmulx | GIF version |
Description: Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptclx.ss | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvmptadd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
dvmptadd.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) |
dvmptadd.dc | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) |
Ref | Expression |
---|---|
dvmptmulx | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvmptclx.ss | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
3 | dvmptadd.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
4 | 3 | fmpttd 5663 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
5 | dvmptadd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) | |
6 | 5 | fmpttd 5663 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶):𝑋⟶ℂ) |
7 | dvmptadd.da | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
8 | 7 | dmeqd 4822 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
9 | dvmptadd.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
10 | 9 | ralrimiva 2548 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
11 | dmmptg 5118 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
13 | 8, 12 | eqtrd 2208 | . . 3 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
14 | dvmptadd.dc | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) | |
15 | 14 | dmeqd 4822 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = dom (𝑥 ∈ 𝑋 ↦ 𝐷)) |
16 | dvmptadd.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) | |
17 | 16 | ralrimiva 2548 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐷 ∈ 𝑊) |
18 | dmmptg 5118 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 → dom (𝑥 ∈ 𝑋 ↦ 𝐷) = 𝑋) | |
19 | 17, 18 | syl 14 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐷) = 𝑋) |
20 | 15, 19 | eqtrd 2208 | . . 3 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = 𝑋) |
21 | 1, 2, 4, 6, 13, 20 | dvimulf 13721 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶))) = (((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 + ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐴)))) |
22 | 1, 2 | ssexd 4138 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
23 | eqidd 2176 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
24 | eqidd 2176 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) = (𝑥 ∈ 𝑋 ↦ 𝐶)) | |
25 | 22, 3, 5, 23, 24 | offval2 6088 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) |
26 | 25 | oveq2d 5881 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶))) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶)))) |
27 | 1, 3, 9, 7, 2 | dvmptclx 13731 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
28 | 27, 5 | mulcld 7952 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) ∈ ℂ) |
29 | 1, 5, 16, 14, 2 | dvmptclx 13731 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) |
30 | 29, 3 | mulcld 7952 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 · 𝐴) ∈ ℂ) |
31 | 22, 9, 5, 7, 24 | offval2 6088 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐵 · 𝐶))) |
32 | 22, 16, 3, 14, 23 | offval2 6088 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝐷 · 𝐴))) |
33 | 22, 28, 30, 31, 32 | offval2 6088 | . 2 ⊢ (𝜑 → (((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 + ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
34 | 21, 26, 33 | 3eqtr3d 2216 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∀wral 2453 Vcvv 2735 ⊆ wss 3127 {cpr 3590 ↦ cmpt 4059 dom cdm 4620 (class class class)co 5865 ∘𝑓 cof 6071 ℂcc 7784 ℝcr 7785 + caddc 7789 · cmul 7791 D cdv 13675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 ax-addf 7908 ax-mulf 7909 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-of 6073 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-map 6640 df-pm 6641 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-n0 9148 df-z 9225 df-uz 9500 df-q 9591 df-rp 9623 df-xneg 9741 df-xadd 9742 df-seqfrec 10414 df-exp 10488 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-rest 12610 df-topgen 12629 df-psmet 13038 df-xmet 13039 df-met 13040 df-bl 13041 df-mopn 13042 df-top 13047 df-topon 13060 df-bases 13092 df-ntr 13147 df-cn 13239 df-cnp 13240 df-tx 13304 df-cncf 13609 df-limced 13676 df-dvap 13677 |
This theorem is referenced by: dvmptcmulcn 13734 |
Copyright terms: Public domain | W3C validator |