![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvmptmulx | GIF version |
Description: Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptclx.ss | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvmptadd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
dvmptadd.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) |
dvmptadd.dc | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) |
Ref | Expression |
---|---|
dvmptmulx | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvmptclx.ss | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
3 | dvmptadd.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
4 | 3 | fmpttd 5713 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
5 | dvmptadd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) | |
6 | 5 | fmpttd 5713 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶):𝑋⟶ℂ) |
7 | dvmptadd.da | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
8 | 7 | dmeqd 4864 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
9 | dvmptadd.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
10 | 9 | ralrimiva 2567 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
11 | dmmptg 5163 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
13 | 8, 12 | eqtrd 2226 | . . 3 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
14 | dvmptadd.dc | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) | |
15 | 14 | dmeqd 4864 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = dom (𝑥 ∈ 𝑋 ↦ 𝐷)) |
16 | dvmptadd.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) | |
17 | 16 | ralrimiva 2567 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐷 ∈ 𝑊) |
18 | dmmptg 5163 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 → dom (𝑥 ∈ 𝑋 ↦ 𝐷) = 𝑋) | |
19 | 17, 18 | syl 14 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐷) = 𝑋) |
20 | 15, 19 | eqtrd 2226 | . . 3 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = 𝑋) |
21 | 1, 2, 4, 6, 13, 20 | dvimulf 14855 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶))) = (((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 + ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐴)))) |
22 | 1, 2 | ssexd 4169 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
23 | eqidd 2194 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
24 | eqidd 2194 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) = (𝑥 ∈ 𝑋 ↦ 𝐶)) | |
25 | 22, 3, 5, 23, 24 | offval2 6146 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) |
26 | 25 | oveq2d 5934 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶))) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶)))) |
27 | 1, 3, 9, 7, 2 | dvmptclx 14865 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
28 | 27, 5 | mulcld 8040 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 · 𝐶) ∈ ℂ) |
29 | 1, 5, 16, 14, 2 | dvmptclx 14865 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) |
30 | 29, 3 | mulcld 8040 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 · 𝐴) ∈ ℂ) |
31 | 22, 9, 5, 7, 24 | offval2 6146 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐵 · 𝐶))) |
32 | 22, 16, 3, 14, 23 | offval2 6146 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝐷 · 𝐴))) |
33 | 22, 28, 30, 31, 32 | offval2 6146 | . 2 ⊢ (𝜑 → (((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 + ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) ∘𝑓 · (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
34 | 21, 26, 33 | 3eqtr3d 2234 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ⊆ wss 3153 {cpr 3619 ↦ cmpt 4090 dom cdm 4659 (class class class)co 5918 ∘𝑓 cof 6128 ℂcc 7870 ℝcr 7871 + caddc 7875 · cmul 7877 D cdv 14809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-map 6704 df-pm 6705 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-xneg 9838 df-xadd 9839 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-rest 12852 df-topgen 12871 df-psmet 14039 df-xmet 14040 df-met 14041 df-bl 14042 df-mopn 14043 df-top 14166 df-topon 14179 df-bases 14211 df-ntr 14264 df-cn 14356 df-cnp 14357 df-tx 14421 df-cncf 14726 df-limced 14810 df-dvap 14811 |
This theorem is referenced by: dvmptcmulcn 14868 |
Copyright terms: Public domain | W3C validator |