ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptmulx GIF version

Theorem dvmptmulx 12851
Description: Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptclx.ss (𝜑𝑋𝑆)
dvmptadd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptadd.d ((𝜑𝑥𝑋) → 𝐷𝑊)
dvmptadd.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptmulx (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvmptmulx
StepHypRef Expression
1 dvmptadd.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptclx.ss . . 3 (𝜑𝑋𝑆)
3 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
43fmpttd 5575 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
5 dvmptadd.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
65fmpttd 5575 . . 3 (𝜑 → (𝑥𝑋𝐶):𝑋⟶ℂ)
7 dvmptadd.da . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
87dmeqd 4741 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
9 dvmptadd.b . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑉)
109ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
11 dmmptg 5036 . . . . 5 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1210, 11syl 14 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
138, 12eqtrd 2172 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
14 dvmptadd.dc . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
1514dmeqd 4741 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = dom (𝑥𝑋𝐷))
16 dvmptadd.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷𝑊)
1716ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐷𝑊)
18 dmmptg 5036 . . . . 5 (∀𝑥𝑋 𝐷𝑊 → dom (𝑥𝑋𝐷) = 𝑋)
1917, 18syl 14 . . . 4 (𝜑 → dom (𝑥𝑋𝐷) = 𝑋)
2015, 19eqtrd 2172 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = 𝑋)
211, 2, 4, 6, 13, 20dvimulf 12839 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 · (𝑥𝑋𝐶))) = (((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 · (𝑥𝑋𝐶)) ∘𝑓 + ((𝑆 D (𝑥𝑋𝐶)) ∘𝑓 · (𝑥𝑋𝐴))))
221, 2ssexd 4068 . . . 4 (𝜑𝑋 ∈ V)
23 eqidd 2140 . . . 4 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
24 eqidd 2140 . . . 4 (𝜑 → (𝑥𝑋𝐶) = (𝑥𝑋𝐶))
2522, 3, 5, 23, 24offval2 5997 . . 3 (𝜑 → ((𝑥𝑋𝐴) ∘𝑓 · (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ (𝐴 · 𝐶)))
2625oveq2d 5790 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 · (𝑥𝑋𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))))
271, 3, 9, 7, 2dvmptclx 12849 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
2827, 5mulcld 7786 . . 3 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) ∈ ℂ)
291, 5, 16, 14, 2dvmptclx 12849 . . . 4 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
3029, 3mulcld 7786 . . 3 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
3122, 9, 5, 7, 24offval2 5997 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 · (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ (𝐵 · 𝐶)))
3222, 16, 3, 14, 23offval2 5997 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐶)) ∘𝑓 · (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ (𝐷 · 𝐴)))
3322, 28, 30, 31, 32offval2 5997 . 2 (𝜑 → (((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 · (𝑥𝑋𝐶)) ∘𝑓 + ((𝑆 D (𝑥𝑋𝐶)) ∘𝑓 · (𝑥𝑋𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
3421, 26, 333eqtr3d 2180 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  wss 3071  {cpr 3528  cmpt 3989  dom cdm 4539  (class class class)co 5774  𝑓 cof 5980  cc 7618  cr 7619   + caddc 7623   · cmul 7625   D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvmptcmulcn  12852
  Copyright terms: Public domain W3C validator