ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptmulx GIF version

Theorem dvmptmulx 15402
Description: Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptclx.ss (𝜑𝑋𝑆)
dvmptadd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptadd.d ((𝜑𝑥𝑋) → 𝐷𝑊)
dvmptadd.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptmulx (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvmptmulx
StepHypRef Expression
1 dvmptadd.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptclx.ss . . 3 (𝜑𝑋𝑆)
3 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
43fmpttd 5792 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
5 dvmptadd.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
65fmpttd 5792 . . 3 (𝜑 → (𝑥𝑋𝐶):𝑋⟶ℂ)
7 dvmptadd.da . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
87dmeqd 4925 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
9 dvmptadd.b . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑉)
109ralrimiva 2603 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
11 dmmptg 5226 . . . . 5 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1210, 11syl 14 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
138, 12eqtrd 2262 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
14 dvmptadd.dc . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
1514dmeqd 4925 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = dom (𝑥𝑋𝐷))
16 dvmptadd.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷𝑊)
1716ralrimiva 2603 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐷𝑊)
18 dmmptg 5226 . . . . 5 (∀𝑥𝑋 𝐷𝑊 → dom (𝑥𝑋𝐷) = 𝑋)
1917, 18syl 14 . . . 4 (𝜑 → dom (𝑥𝑋𝐷) = 𝑋)
2015, 19eqtrd 2262 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = 𝑋)
211, 2, 4, 6, 13, 20dvimulf 15388 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 · (𝑥𝑋𝐶))) = (((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 · (𝑥𝑋𝐶)) ∘𝑓 + ((𝑆 D (𝑥𝑋𝐶)) ∘𝑓 · (𝑥𝑋𝐴))))
221, 2ssexd 4224 . . . 4 (𝜑𝑋 ∈ V)
23 eqidd 2230 . . . 4 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
24 eqidd 2230 . . . 4 (𝜑 → (𝑥𝑋𝐶) = (𝑥𝑋𝐶))
2522, 3, 5, 23, 24offval2 6240 . . 3 (𝜑 → ((𝑥𝑋𝐴) ∘𝑓 · (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ (𝐴 · 𝐶)))
2625oveq2d 6023 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 · (𝑥𝑋𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))))
271, 3, 9, 7, 2dvmptclx 15400 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
2827, 5mulcld 8175 . . 3 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) ∈ ℂ)
291, 5, 16, 14, 2dvmptclx 15400 . . . 4 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
3029, 3mulcld 8175 . . 3 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
3122, 9, 5, 7, 24offval2 6240 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 · (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ (𝐵 · 𝐶)))
3222, 16, 3, 14, 23offval2 6240 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐶)) ∘𝑓 · (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ (𝐷 · 𝐴)))
3322, 28, 30, 31, 32offval2 6240 . 2 (𝜑 → (((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 · (𝑥𝑋𝐶)) ∘𝑓 + ((𝑆 D (𝑥𝑋𝐶)) ∘𝑓 · (𝑥𝑋𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
3421, 26, 333eqtr3d 2270 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  wss 3197  {cpr 3667  cmpt 4145  dom cdm 4719  (class class class)co 6007  𝑓 cof 6222  cc 8005  cr 8006   + caddc 8010   · cmul 8012   D cdv 15337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-pm 6806  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253  df-limced 15338  df-dvap 15339
This theorem is referenced by:  dvmptcmulcn  15403
  Copyright terms: Public domain W3C validator