ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ennn GIF version

Theorem nn0ennn 10525
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn 0 ≈ ℕ

Proof of Theorem nn0ennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 9255 . 2 0 ∈ V
2 nnex 8996 . 2 ℕ ∈ V
3 nn0p1nn 9288 . 2 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4 nnm1nn0 9290 . 2 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
5 nncn 8998 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6 nn0cn 9259 . . 3 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
7 ax-1cn 7972 . . . . . 6 1 ∈ ℂ
8 subadd 8229 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
97, 8mp3an2 1336 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
10 eqcom 2198 . . . . 5 (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥)
11 eqcom 2198 . . . . 5 (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦)
129, 10, 113bitr4g 223 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥)))
13 addcom 8163 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1))
147, 13mpan 424 . . . . . 6 (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1))
1514eqeq2d 2208 . . . . 5 (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1615adantl 277 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1712, 16bitrd 188 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
185, 6, 17syl2anr 290 . 2 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
191, 2, 3, 4, 18en3i 6830 1 0 ≈ ℕ
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  cen 6797  cc 7877  1c1 7880   + caddc 7882  cmin 8197  cn 8990  0cn0 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-en 6800  df-sub 8199  df-inn 8991  df-n0 9250
This theorem is referenced by:  nnenom  10526  uzennn  10528  xpnnen  12611  znnen  12615  ennnfonelemim  12641
  Copyright terms: Public domain W3C validator