| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ennn | GIF version | ||
| Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ennn | ⊢ ℕ0 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex 9321 | . 2 ⊢ ℕ0 ∈ V | |
| 2 | nnex 9062 | . 2 ⊢ ℕ ∈ V | |
| 3 | nn0p1nn 9354 | . 2 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ) | |
| 4 | nnm1nn0 9356 | . 2 ⊢ (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0) | |
| 5 | nncn 9064 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 6 | nn0cn 9325 | . . 3 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 7 | ax-1cn 8038 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 8 | subadd 8295 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) | |
| 9 | 7, 8 | mp3an2 1338 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) |
| 10 | eqcom 2208 | . . . . 5 ⊢ (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥) | |
| 11 | eqcom 2208 | . . . . 5 ⊢ (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦) | |
| 12 | 9, 10, 11 | 3bitr4g 223 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥))) |
| 13 | addcom 8229 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1)) | |
| 14 | 7, 13 | mpan 424 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1)) |
| 15 | 14 | eqeq2d 2218 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
| 16 | 15 | adantl 277 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
| 17 | 12, 16 | bitrd 188 | . . 3 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
| 18 | 5, 6, 17 | syl2anr 290 | . 2 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
| 19 | 1, 2, 3, 4, 18 | en3i 6875 | 1 ⊢ ℕ0 ≈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 (class class class)co 5957 ≈ cen 6838 ℂcc 7943 1c1 7946 + caddc 7948 − cmin 8263 ℕcn 9056 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-en 6841 df-sub 8265 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: nnenom 10601 uzennn 10603 xpnnen 12840 znnen 12844 ennnfonelemim 12870 |
| Copyright terms: Public domain | W3C validator |