![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ennn | GIF version |
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
Ref | Expression |
---|---|
nn0ennn | ⊢ ℕ0 ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 9184 | . 2 ⊢ ℕ0 ∈ V | |
2 | nnex 8927 | . 2 ⊢ ℕ ∈ V | |
3 | nn0p1nn 9217 | . 2 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ) | |
4 | nnm1nn0 9219 | . 2 ⊢ (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0) | |
5 | nncn 8929 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
6 | nn0cn 9188 | . . 3 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
7 | ax-1cn 7906 | . . . . . 6 ⊢ 1 ∈ ℂ | |
8 | subadd 8162 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) | |
9 | 7, 8 | mp3an2 1325 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) |
10 | eqcom 2179 | . . . . 5 ⊢ (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥) | |
11 | eqcom 2179 | . . . . 5 ⊢ (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦) | |
12 | 9, 10, 11 | 3bitr4g 223 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥))) |
13 | addcom 8096 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1)) | |
14 | 7, 13 | mpan 424 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1)) |
15 | 14 | eqeq2d 2189 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
16 | 15 | adantl 277 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
17 | 12, 16 | bitrd 188 | . . 3 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
18 | 5, 6, 17 | syl2anr 290 | . 2 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
19 | 1, 2, 3, 4, 18 | en3i 6773 | 1 ⊢ ℕ0 ≈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ≈ cen 6740 ℂcc 7811 1c1 7814 + caddc 7816 − cmin 8130 ℕcn 8921 ℕ0cn0 9178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-en 6743 df-sub 8132 df-inn 8922 df-n0 9179 |
This theorem is referenced by: nnenom 10436 uzennn 10438 xpnnen 12397 znnen 12401 ennnfonelemim 12427 |
Copyright terms: Public domain | W3C validator |