ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ennn GIF version

Theorem nn0ennn 9989
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn 0 ≈ ℕ

Proof of Theorem nn0ennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 8777 . 2 0 ∈ V
2 nnex 8526 . 2 ℕ ∈ V
3 nn0p1nn 8810 . 2 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4 nnm1nn0 8812 . 2 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
5 nncn 8528 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6 nn0cn 8781 . . 3 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
7 ax-1cn 7535 . . . . . 6 1 ∈ ℂ
8 subadd 7782 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
97, 8mp3an2 1268 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
10 eqcom 2097 . . . . 5 (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥)
11 eqcom 2097 . . . . 5 (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦)
129, 10, 113bitr4g 222 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥)))
13 addcom 7716 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1))
147, 13mpan 416 . . . . . 6 (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1))
1514eqeq2d 2106 . . . . 5 (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1615adantl 272 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1712, 16bitrd 187 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
185, 6, 17syl2anr 285 . 2 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
191, 2, 3, 4, 18en3i 6568 1 0 ≈ ℕ
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1296  wcel 1445   class class class wbr 3867  (class class class)co 5690  cen 6535  cc 7445  1c1 7448   + caddc 7450  cmin 7750  cn 8520  0cn0 8771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-en 6538  df-sub 7752  df-inn 8521  df-n0 8772
This theorem is referenced by:  nnenom  9990  xpnnen  11650  znnen  11654
  Copyright terms: Public domain W3C validator