ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ennn GIF version

Theorem nn0ennn 10576
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn 0 ≈ ℕ

Proof of Theorem nn0ennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 9300 . 2 0 ∈ V
2 nnex 9041 . 2 ℕ ∈ V
3 nn0p1nn 9333 . 2 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4 nnm1nn0 9335 . 2 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
5 nncn 9043 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6 nn0cn 9304 . . 3 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
7 ax-1cn 8017 . . . . . 6 1 ∈ ℂ
8 subadd 8274 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
97, 8mp3an2 1337 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦))
10 eqcom 2206 . . . . 5 (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥)
11 eqcom 2206 . . . . 5 (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦)
129, 10, 113bitr4g 223 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥)))
13 addcom 8208 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1))
147, 13mpan 424 . . . . . 6 (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1))
1514eqeq2d 2216 . . . . 5 (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1615adantl 277 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1)))
1712, 16bitrd 188 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
185, 6, 17syl2anr 290 . 2 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1)))
191, 2, 3, 4, 18en3i 6861 1 0 ≈ ℕ
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1372  wcel 2175   class class class wbr 4043  (class class class)co 5943  cen 6824  cc 7922  1c1 7925   + caddc 7927  cmin 8242  cn 9035  0cn0 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-en 6827  df-sub 8244  df-inn 9036  df-n0 9295
This theorem is referenced by:  nnenom  10577  uzennn  10579  xpnnen  12707  znnen  12711  ennnfonelemim  12737
  Copyright terms: Public domain W3C validator