| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ennn | GIF version | ||
| Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ennn | ⊢ ℕ0 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex 9371 | . 2 ⊢ ℕ0 ∈ V | |
| 2 | nnex 9112 | . 2 ⊢ ℕ ∈ V | |
| 3 | nn0p1nn 9404 | . 2 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ) | |
| 4 | nnm1nn0 9406 | . 2 ⊢ (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0) | |
| 5 | nncn 9114 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 6 | nn0cn 9375 | . . 3 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 7 | ax-1cn 8088 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 8 | subadd 8345 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) | |
| 9 | 7, 8 | mp3an2 1359 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) |
| 10 | eqcom 2231 | . . . . 5 ⊢ (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥) | |
| 11 | eqcom 2231 | . . . . 5 ⊢ (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦) | |
| 12 | 9, 10, 11 | 3bitr4g 223 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥))) |
| 13 | addcom 8279 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1)) | |
| 14 | 7, 13 | mpan 424 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1)) |
| 15 | 14 | eqeq2d 2241 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
| 16 | 15 | adantl 277 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
| 17 | 12, 16 | bitrd 188 | . . 3 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
| 18 | 5, 6, 17 | syl2anr 290 | . 2 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
| 19 | 1, 2, 3, 4, 18 | en3i 6920 | 1 ⊢ ℕ0 ≈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ≈ cen 6883 ℂcc 7993 1c1 7996 + caddc 7998 − cmin 8313 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-en 6886 df-sub 8315 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: nnenom 10651 uzennn 10653 xpnnen 12960 znnen 12964 ennnfonelemim 12990 |
| Copyright terms: Public domain | W3C validator |