| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ennn | GIF version | ||
| Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ennn | ⊢ ℕ0 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex 9300 | . 2 ⊢ ℕ0 ∈ V | |
| 2 | nnex 9041 | . 2 ⊢ ℕ ∈ V | |
| 3 | nn0p1nn 9333 | . 2 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ) | |
| 4 | nnm1nn0 9335 | . 2 ⊢ (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0) | |
| 5 | nncn 9043 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 6 | nn0cn 9304 | . . 3 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 7 | ax-1cn 8017 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 8 | subadd 8274 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) | |
| 9 | 7, 8 | mp3an2 1337 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 − 1) = 𝑥 ↔ (1 + 𝑥) = 𝑦)) |
| 10 | eqcom 2206 | . . . . 5 ⊢ (𝑥 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑥) | |
| 11 | eqcom 2206 | . . . . 5 ⊢ (𝑦 = (1 + 𝑥) ↔ (1 + 𝑥) = 𝑦) | |
| 12 | 9, 10, 11 | 3bitr4g 223 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (1 + 𝑥))) |
| 13 | addcom 8208 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + 𝑥) = (𝑥 + 1)) | |
| 14 | 7, 13 | mpan 424 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 + 𝑥) = (𝑥 + 1)) |
| 15 | 14 | eqeq2d 2216 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
| 16 | 15 | adantl 277 | . . . 4 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = (1 + 𝑥) ↔ 𝑦 = (𝑥 + 1))) |
| 17 | 12, 16 | bitrd 188 | . . 3 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
| 18 | 5, 6, 17 | syl2anr 290 | . 2 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 = (𝑦 − 1) ↔ 𝑦 = (𝑥 + 1))) |
| 19 | 1, 2, 3, 4, 18 | en3i 6861 | 1 ⊢ ℕ0 ≈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ≈ cen 6824 ℂcc 7922 1c1 7925 + caddc 7927 − cmin 8242 ℕcn 9035 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-en 6827 df-sub 8244 df-inn 9036 df-n0 9295 |
| This theorem is referenced by: nnenom 10577 uzennn 10579 xpnnen 12707 znnen 12711 ennnfonelemim 12737 |
| Copyright terms: Public domain | W3C validator |