| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enfi | GIF version | ||
| Description: Equinumerous sets have the same finiteness. (Contributed by NM, 22-Aug-2008.) |
| Ref | Expression |
|---|---|
| enfi | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enen1 6997 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥)) | |
| 2 | 1 | rexbidv 2531 | . 2 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥)) |
| 3 | isfi 6910 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 4 | isfi 6910 | . 2 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4082 ωcom 4681 ≈ cen 6883 Fincfn 6885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-er 6678 df-en 6886 df-fin 6888 |
| This theorem is referenced by: enfii 7032 findcard2 7047 findcard2s 7048 hash2en 11060 pwf1oexmid 16324 |
| Copyright terms: Public domain | W3C validator |