ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enfi GIF version

Theorem enfi 6985
Description: Equinumerous sets have the same finiteness. (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
enfi (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))

Proof of Theorem enfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enen1 6952 . . 3 (𝐴𝐵 → (𝐴𝑥𝐵𝑥))
21rexbidv 2508 . 2 (𝐴𝐵 → (∃𝑥 ∈ ω 𝐴𝑥 ↔ ∃𝑥 ∈ ω 𝐵𝑥))
3 isfi 6865 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 6865 . 2 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
52, 3, 43bitr4g 223 1 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2177  wrex 2486   class class class wbr 4051  ωcom 4646  cen 6838  Fincfn 6840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-er 6633  df-en 6841  df-fin 6843
This theorem is referenced by:  enfii  6986  findcard2  7001  findcard2s  7002  hash2en  11010  pwf1oexmid  16077
  Copyright terms: Public domain W3C validator