![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resubmet | GIF version |
Description: The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
resubmet.1 | ⊢ 𝑅 = (topGen‘ran (,)) |
resubmet.2 | ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) |
Ref | Expression |
---|---|
resubmet | ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubmet.2 | . . 3 ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
2 | xpss12 4748 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ⊆ ℝ) → (𝐴 × 𝐴) ⊆ (ℝ × ℝ)) | |
3 | 2 | anidms 397 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (𝐴 × 𝐴) ⊆ (ℝ × ℝ)) |
4 | 3 | resabs1d 4952 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))) |
5 | 4 | fveq2d 5535 | . . 3 ⊢ (𝐴 ⊆ ℝ → (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
6 | 1, 5 | eqtr4id 2241 | . 2 ⊢ (𝐴 ⊆ ℝ → 𝐽 = (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)))) |
7 | eqid 2189 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
8 | 7 | rexmet 14478 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) |
9 | eqid 2189 | . . . 4 ⊢ (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)) | |
10 | resubmet.1 | . . . . 5 ⊢ 𝑅 = (topGen‘ran (,)) | |
11 | eqid 2189 | . . . . . 6 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
12 | 7, 11 | tgioo 14483 | . . . . 5 ⊢ (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
13 | 10, 12 | eqtri 2210 | . . . 4 ⊢ 𝑅 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
14 | eqid 2189 | . . . 4 ⊢ (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))) = (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))) | |
15 | 9, 13, 14 | metrest 14443 | . . 3 ⊢ ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑅 ↾t 𝐴) = (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)))) |
16 | 8, 15 | mpan 424 | . 2 ⊢ (𝐴 ⊆ ℝ → (𝑅 ↾t 𝐴) = (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)))) |
17 | 6, 16 | eqtr4d 2225 | 1 ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 × cxp 4639 ran crn 4642 ↾ cres 4643 ∘ ccom 4645 ‘cfv 5232 (class class class)co 5892 ℝcr 7835 − cmin 8153 (,)cioo 9913 abscabs 11033 ↾t crest 12737 topGenctg 12752 ∞Metcxmet 13842 MetOpencmopn 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-mulrcl 7935 ax-addcom 7936 ax-mulcom 7937 ax-addass 7938 ax-mulass 7939 ax-distr 7940 ax-i2m1 7941 ax-0lt1 7942 ax-1rid 7943 ax-0id 7944 ax-rnegex 7945 ax-precex 7946 ax-cnre 7947 ax-pre-ltirr 7948 ax-pre-ltwlin 7949 ax-pre-lttrn 7950 ax-pre-apti 7951 ax-pre-ltadd 7952 ax-pre-mulgt0 7953 ax-pre-mulext 7954 ax-arch 7955 ax-caucvg 7956 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-isom 5241 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-frec 6411 df-map 6671 df-sup 7008 df-inf 7009 df-pnf 8019 df-mnf 8020 df-xr 8021 df-ltxr 8022 df-le 8023 df-sub 8155 df-neg 8156 df-reap 8557 df-ap 8564 df-div 8655 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-n0 9202 df-z 9279 df-uz 9554 df-q 9645 df-rp 9679 df-xneg 9797 df-xadd 9798 df-ioo 9917 df-seqfrec 10472 df-exp 10546 df-cj 10878 df-re 10879 df-im 10880 df-rsqrt 11034 df-abs 11035 df-rest 12739 df-topgen 12758 df-psmet 13849 df-xmet 13850 df-met 13851 df-bl 13852 df-mopn 13853 df-top 13935 df-topon 13948 df-bases 13980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |