![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resubmet | GIF version |
Description: The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
resubmet.1 | β’ π = (topGenβran (,)) |
resubmet.2 | β’ π½ = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) |
Ref | Expression |
---|---|
resubmet | β’ (π΄ β β β π½ = (π βΎt π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubmet.2 | . . 3 β’ π½ = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) | |
2 | xpss12 4735 | . . . . . 6 β’ ((π΄ β β β§ π΄ β β) β (π΄ Γ π΄) β (β Γ β)) | |
3 | 2 | anidms 397 | . . . . 5 β’ (π΄ β β β (π΄ Γ π΄) β (β Γ β)) |
4 | 3 | resabs1d 4939 | . . . 4 β’ (π΄ β β β (((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄)) = ((abs β β ) βΎ (π΄ Γ π΄))) |
5 | 4 | fveq2d 5521 | . . 3 β’ (π΄ β β β (MetOpenβ(((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄))) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
6 | 1, 5 | eqtr4id 2229 | . 2 β’ (π΄ β β β π½ = (MetOpenβ(((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄)))) |
7 | eqid 2177 | . . . 4 β’ ((abs β β ) βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) | |
8 | 7 | rexmet 14181 | . . 3 β’ ((abs β β ) βΎ (β Γ β)) β (βMetββ) |
9 | eqid 2177 | . . . 4 β’ (((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄)) = (((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄)) | |
10 | resubmet.1 | . . . . 5 β’ π = (topGenβran (,)) | |
11 | eqid 2177 | . . . . . 6 β’ (MetOpenβ((abs β β ) βΎ (β Γ β))) = (MetOpenβ((abs β β ) βΎ (β Γ β))) | |
12 | 7, 11 | tgioo 14186 | . . . . 5 β’ (topGenβran (,)) = (MetOpenβ((abs β β ) βΎ (β Γ β))) |
13 | 10, 12 | eqtri 2198 | . . . 4 β’ π = (MetOpenβ((abs β β ) βΎ (β Γ β))) |
14 | eqid 2177 | . . . 4 β’ (MetOpenβ(((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄))) = (MetOpenβ(((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄))) | |
15 | 9, 13, 14 | metrest 14146 | . . 3 β’ ((((abs β β ) βΎ (β Γ β)) β (βMetββ) β§ π΄ β β) β (π βΎt π΄) = (MetOpenβ(((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄)))) |
16 | 8, 15 | mpan 424 | . 2 β’ (π΄ β β β (π βΎt π΄) = (MetOpenβ(((abs β β ) βΎ (β Γ β)) βΎ (π΄ Γ π΄)))) |
17 | 6, 16 | eqtr4d 2213 | 1 β’ (π΄ β β β π½ = (π βΎt π΄)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 β wss 3131 Γ cxp 4626 ran crn 4629 βΎ cres 4630 β ccom 4632 βcfv 5218 (class class class)co 5878 βcr 7813 β cmin 8131 (,)cioo 9891 abscabs 11009 βΎt crest 12694 topGenctg 12709 βMetcxmet 13580 MetOpencmopn 13585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 ax-caucvg 7934 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-frec 6395 df-map 6653 df-sup 6986 df-inf 6987 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-n0 9180 df-z 9257 df-uz 9532 df-q 9623 df-rp 9657 df-xneg 9775 df-xadd 9776 df-ioo 9895 df-seqfrec 10449 df-exp 10523 df-cj 10854 df-re 10855 df-im 10856 df-rsqrt 11010 df-abs 11011 df-rest 12696 df-topgen 12715 df-psmet 13587 df-xmet 13588 df-met 13589 df-bl 13590 df-mopn 13591 df-top 13638 df-topon 13651 df-bases 13683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |