ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  telfsumo GIF version

Theorem telfsumo 11963
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo
StepHypRef Expression
1 sum0 11885 . . . 4 Σ𝑗 ∈ ∅ (𝐵𝐶) = 0
2 telfsumo.3 . . . . . . . 8 (𝑘 = 𝑀𝐴 = 𝐷)
32eleq1d 2298 . . . . . . 7 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
4 telfsumo.6 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
54ralrimiva 2603 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
6 telfsumo.5 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluzfz1 10215 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
86, 7syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
93, 5, 8rspcdva 2912 . . . . . 6 (𝜑𝐷 ∈ ℂ)
109adantr 276 . . . . 5 ((𝜑𝑁 = 𝑀) → 𝐷 ∈ ℂ)
1110subidd 8433 . . . 4 ((𝜑𝑁 = 𝑀) → (𝐷𝐷) = 0)
121, 11eqtr4id 2281 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ ∅ (𝐵𝐶) = (𝐷𝐷))
13 oveq2 6002 . . . . . 6 (𝑁 = 𝑀 → (𝑀..^𝑁) = (𝑀..^𝑀))
1413adantl 277 . . . . 5 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀))
15 fzo0 10354 . . . . 5 (𝑀..^𝑀) = ∅
1614, 15eqtrdi 2278 . . . 4 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = ∅)
1716sumeq1d 11863 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = Σ𝑗 ∈ ∅ (𝐵𝐶))
18 eqeq1 2236 . . . . . . . 8 (𝑘 = 𝑁 → (𝑘 = 𝑀𝑁 = 𝑀))
19 telfsumo.4 . . . . . . . . 9 (𝑘 = 𝑁𝐴 = 𝐸)
2019eqeq1d 2238 . . . . . . . 8 (𝑘 = 𝑁 → (𝐴 = 𝐷𝐸 = 𝐷))
2118, 20imbi12d 234 . . . . . . 7 (𝑘 = 𝑁 → ((𝑘 = 𝑀𝐴 = 𝐷) ↔ (𝑁 = 𝑀𝐸 = 𝐷)))
2221, 2vtoclg 2861 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝐸 = 𝐷))
2322imp 124 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝐸 = 𝐷)
246, 23sylan 283 . . . 4 ((𝜑𝑁 = 𝑀) → 𝐸 = 𝐷)
2524oveq2d 6010 . . 3 ((𝜑𝑁 = 𝑀) → (𝐷𝐸) = (𝐷𝐷))
2612, 17, 253eqtr4d 2272 . 2 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
27 eluzel2 9715 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
286, 27syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
29 eluzelz 9719 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
306, 29syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
31 fzofig 10641 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin)
3228, 30, 31syl2anc 411 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
33 telfsumo.1 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝐵)
3433eleq1d 2298 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
355adantr 276 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
36 elfzofz 10347 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3736adantl 277 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑁))
3834, 35, 37rspcdva 2912 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
39 telfsumo.2 . . . . . . 7 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
4039eleq1d 2298 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
41 fzofzp1 10420 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
4241adantl 277 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...𝑁))
4340, 35, 42rspcdva 2912 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
4432, 38, 43fsumsub 11949 . . . 4 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4544adantr 276 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4633cbvsumv 11858 . . . . 5 Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐵
47 eluzp1m1 9734 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
4828, 47sylan 283 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
4930adantr 276 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ ℤ)
50 fzoval 10332 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
5149, 50syl 14 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
52 fzossfz 10350 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ (𝑀...𝑁)
5351, 52eqsstrrdi 3277 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
5453sselda 3224 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...𝑁))
554adantlr 477 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
5654, 55syldan 282 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
5748, 56, 2fsum1p 11915 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
5851sumeq1d 11863 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴)
59 fzoval 10332 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6049, 59syl 14 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6160sumeq1d 11863 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
6261oveq2d 6010 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
6357, 58, 623eqtr4d 2272 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
6446, 63eqtr3id 2276 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐵 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
65 simpr 110 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
66 fzp1ss 10257 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6728, 66syl 14 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6867sselda 3224 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
6968, 4syldan 282 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7069adantlr 477 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7165, 70, 19fsumm1 11913 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
72 1zzd 9461 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
7328peano2zd 9560 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
7472, 73, 30, 69, 39fsumshftm 11942 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶)
7528zcnd 9558 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
76 ax-1cn 8080 . . . . . . . . . . 11 1 ∈ ℂ
77 pncan 8340 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7875, 76, 77sylancl 413 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7978oveq1d 6009 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1)))
8030, 50syl 14 . . . . . . . . 9 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8179, 80eqtr4d 2265 . . . . . . . 8 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀..^𝑁))
8281sumeq1d 11863 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8374, 82eqtrd 2262 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8483adantr 276 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8530, 59syl 14 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
8685sumeq1d 11863 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
8786oveq1d 6009 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
88 fzofig 10641 . . . . . . . . . 10 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1)..^𝑁) ∈ Fin)
8973, 30, 88syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) ∈ Fin)
90 elfzofz 10347 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 ∈ ((𝑀 + 1)...𝑁))
9190, 69sylan2 286 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝐴 ∈ ℂ)
9289, 91fsumcl 11897 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 ∈ ℂ)
9319eleq1d 2298 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
94 eluzfz2 10216 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
956, 94syl 14 . . . . . . . . 9 (𝜑𝑁 ∈ (𝑀...𝑁))
9693, 5, 95rspcdva 2912 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
9792, 96addcomd 8285 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9887, 97eqtr3d 2264 . . . . . 6 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9998adantr 276 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10071, 84, 993eqtr3d 2270 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐶 = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10164, 100oveq12d 6012 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶) = ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)))
1029, 96, 92pnpcan2d 8483 . . . 4 (𝜑 → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
103102adantr 276 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
10445, 101, 1033eqtrd 2266 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
105 uzp1 9744 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
1066, 105syl 14 . 2 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
10726, 104, 106mpjaodan 803 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  wral 2508  wss 3197  c0 3491  cfv 5314  (class class class)co 5994  Fincfn 6877  cc 7985  0cc0 7987  1c1 7988   + caddc 7990  cmin 8305  cz 9434  cuz 9710  ...cfz 10192  ..^cfzo 10326  Σcsu 11850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851
This theorem is referenced by:  telfsumo2  11964  telfsum  11965  geosergap  12003
  Copyright terms: Public domain W3C validator