ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzo GIF version

Theorem hashfzo 10735
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzo
StepHypRef Expression
1 fzo0 10103 . . . . . 6 (𝐴..^𝐴) = ∅
21fveq2i 5489 . . . . 5 (♯‘(𝐴..^𝐴)) = (♯‘∅)
3 hash0 10710 . . . . 5 (♯‘∅) = 0
42, 3eqtri 2186 . . . 4 (♯‘(𝐴..^𝐴)) = 0
5 eluzel2 9471 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
65zcnd 9314 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
76subidd 8197 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴𝐴) = 0)
84, 7eqtr4id 2218 . . 3 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐴)) = (𝐴𝐴))
9 oveq2 5850 . . . . 5 (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴))
109fveq2d 5490 . . . 4 (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴..^𝐴)))
11 oveq1 5849 . . . 4 (𝐵 = 𝐴 → (𝐵𝐴) = (𝐴𝐴))
1210, 11eqeq12d 2180 . . 3 (𝐵 = 𝐴 → ((♯‘(𝐴..^𝐵)) = (𝐵𝐴) ↔ (♯‘(𝐴..^𝐴)) = (𝐴𝐴)))
138, 12syl5ibrcom 156 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (𝐵𝐴)))
14 eluzelz 9475 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
15 fzoval 10083 . . . . . . 7 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1614, 15syl 14 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1716fveq2d 5490 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1))))
1817adantr 274 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1))))
19 hashfz 10734 . . . . 5 ((𝐵 − 1) ∈ (ℤ𝐴) → (♯‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1))
2014zcnd 9314 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
21 1cnd 7915 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
2220, 21, 6sub32d 8241 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵𝐴) − 1))
2322oveq1d 5857 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵𝐴) − 1) + 1))
2420, 6subcld 8209 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
25 ax-1cn 7846 . . . . . . 7 1 ∈ ℂ
26 npcan 8107 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2724, 25, 26sylancl 410 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2823, 27eqtrd 2198 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵𝐴))
2919, 28sylan9eqr 2221 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴...(𝐵 − 1))) = (𝐵𝐴))
3018, 29eqtrd 2198 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))
3130ex 114 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴)))
32 uzm1 9496 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ𝐴)))
3313, 31, 32mpjaod 708 1 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  c0 3409  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   + caddc 7756  cmin 8069  cz 9191  cuz 9466  ...cfz 9944  ..^cfzo 10077  chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078  df-ihash 10689
This theorem is referenced by:  hashfzo0  10736
  Copyright terms: Public domain W3C validator