ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzo GIF version

Theorem hashfzo 10127
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzo
StepHypRef Expression
1 eluzel2 8956 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
21zcnd 8802 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
32subidd 7725 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴𝐴) = 0)
4 fzo0 9507 . . . . . 6 (𝐴..^𝐴) = ∅
54fveq2i 5271 . . . . 5 (♯‘(𝐴..^𝐴)) = (♯‘∅)
6 hash0 10102 . . . . 5 (♯‘∅) = 0
75, 6eqtri 2105 . . . 4 (♯‘(𝐴..^𝐴)) = 0
83, 7syl6reqr 2136 . . 3 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐴)) = (𝐴𝐴))
9 oveq2 5621 . . . . 5 (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴))
109fveq2d 5272 . . . 4 (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴..^𝐴)))
11 oveq1 5620 . . . 4 (𝐵 = 𝐴 → (𝐵𝐴) = (𝐴𝐴))
1210, 11eqeq12d 2099 . . 3 (𝐵 = 𝐴 → ((♯‘(𝐴..^𝐵)) = (𝐵𝐴) ↔ (♯‘(𝐴..^𝐴)) = (𝐴𝐴)))
138, 12syl5ibrcom 155 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (𝐵𝐴)))
14 eluzelz 8960 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
15 fzoval 9487 . . . . . . 7 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1614, 15syl 14 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1716fveq2d 5272 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1))))
1817adantr 270 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1))))
19 hashfz 10126 . . . . 5 ((𝐵 − 1) ∈ (ℤ𝐴) → (♯‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1))
2014zcnd 8802 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
21 1cnd 7448 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
2220, 21, 2sub32d 7769 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵𝐴) − 1))
2322oveq1d 5628 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵𝐴) − 1) + 1))
2420, 2subcld 7737 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
25 ax-1cn 7382 . . . . . . 7 1 ∈ ℂ
26 npcan 7635 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2724, 25, 26sylancl 404 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2823, 27eqtrd 2117 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵𝐴))
2919, 28sylan9eqr 2139 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴...(𝐵 − 1))) = (𝐵𝐴))
3018, 29eqtrd 2117 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))
3130ex 113 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴)))
32 uzm1 8981 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ𝐴)))
3313, 31, 32mpjaod 671 1 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1287  wcel 1436  c0 3275  cfv 4981  (class class class)co 5613  cc 7292  0cc0 7294  1c1 7295   + caddc 7297  cmin 7597  cz 8683  cuz 8951  ...cfz 9356  ..^cfzo 9481  chash 10080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-addass 7391  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-1o 6135  df-er 6244  df-en 6410  df-dom 6411  df-fin 6412  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-inn 8358  df-n0 8607  df-z 8684  df-uz 8952  df-fz 9357  df-fzo 9482  df-ihash 10081
This theorem is referenced by:  hashfzo0  10128
  Copyright terms: Public domain W3C validator