ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmulf GIF version

Theorem qusmulf 13245
Description: The multiplication in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u (𝜑𝑈 = (𝑅 /s ))
qusaddf.v (𝜑𝑉 = (Base‘𝑅))
qusaddf.r (𝜑 Er 𝑉)
qusaddf.z (𝜑𝑅𝑍)
qusaddf.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusaddf.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
qusmulf.p · = (.r𝑅)
qusmulf.a = (.r𝑈)
Assertion
Ref Expression
qusmulf (𝜑 :((𝑉 / ) × (𝑉 / ))⟶(𝑉 / ))
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,   𝜑,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝑈(𝑞,𝑝,𝑎,𝑏)   𝑍(𝑞,𝑝,𝑎,𝑏)

Proof of Theorem qusmulf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusaddf.u . 2 (𝜑𝑈 = (𝑅 /s ))
2 qusaddf.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 qusaddf.r . 2 (𝜑 Er 𝑉)
4 qusaddf.z . 2 (𝜑𝑅𝑍)
5 qusaddf.e . 2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
6 qusaddf.c . 2 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
7 eqid 2206 . 2 (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥] )
8 basfn 12965 . . . . . . 7 Base Fn V
94elexd 2787 . . . . . . 7 (𝜑𝑅 ∈ V)
10 funfvex 5606 . . . . . . . 8 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1110funfni 5385 . . . . . . 7 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
128, 9, 11sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
132, 12eqeltrd 2283 . . . . 5 (𝜑𝑉 ∈ V)
14 erex 6657 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
153, 13, 14sylc 62 . . . 4 (𝜑 ∈ V)
161, 2, 7, 15, 4qusval 13230 . . 3 (𝜑𝑈 = ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅))
171, 2, 7, 15, 4quslem 13231 . . 3 (𝜑 → (𝑥𝑉 ↦ [𝑥] ):𝑉onto→(𝑉 / ))
18 qusmulf.p . . 3 · = (.r𝑅)
19 qusmulf.a . . 3 = (.r𝑈)
2016, 2, 17, 4, 18, 19imasmulr 13216 . 2 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨((𝑥𝑉 ↦ [𝑥] )‘𝑝), ((𝑥𝑉 ↦ [𝑥] )‘𝑞)⟩, ((𝑥𝑉 ↦ [𝑥] )‘(𝑝 · 𝑞))⟩})
21 mulrslid 13039 . . . . 5 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2221slotex 12934 . . . 4 (𝑅𝑍 → (.r𝑅) ∈ V)
234, 22syl 14 . . 3 (𝜑 → (.r𝑅) ∈ V)
2418, 23eqeltrid 2293 . 2 (𝜑· ∈ V)
251, 2, 3, 4, 5, 6, 7, 20, 24qusaddflemg 13241 1 (𝜑 :((𝑉 / ) × (𝑉 / ))⟶(𝑉 / ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773   class class class wbr 4051  cmpt 4113   × cxp 4681   Fn wfn 5275  wf 5276  cfv 5280  (class class class)co 5957   Er wer 6630  [cec 6631   / cqs 6632  Basecbs 12907  .rcmulr 12985   /s cqus 13207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-er 6633  df-ec 6635  df-qs 6639  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-mulr 12998  df-iimas 13209  df-qus 13210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator