ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrng GIF version

Theorem qusrng 13590
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 13698 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u (𝜑𝑈 = (𝑅 /s ))
qusrng.v (𝜑𝑉 = (Base‘𝑅))
qusrng.p + = (+g𝑅)
qusrng.t · = (.r𝑅)
qusrng.r (𝜑 Er 𝑉)
qusrng.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusrng.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusrng.x (𝜑𝑅 ∈ Rng)
Assertion
Ref Expression
qusrng (𝜑𝑈 ∈ Rng)
Distinct variable groups:   𝑅,𝑎,𝑏,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   · ,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem qusrng
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3 (𝜑𝑈 = (𝑅 /s ))
2 qusrng.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2196 . . 3 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusrng.r . . . 4 (𝜑 Er 𝑉)
5 basfn 12761 . . . . . 6 Base Fn V
6 qusrng.x . . . . . . 7 (𝜑𝑅 ∈ Rng)
76elexd 2776 . . . . . 6 (𝜑𝑅 ∈ V)
8 funfvex 5578 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
98funfni 5361 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
105, 7, 9sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
112, 10eqeltrd 2273 . . . 4 (𝜑𝑉 ∈ V)
12 erex 6625 . . . 4 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
134, 11, 12sylc 62 . . 3 (𝜑 ∈ V)
141, 2, 3, 13, 6qusval 13025 . 2 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
15 qusrng.p . 2 + = (+g𝑅)
16 qusrng.t . 2 · = (.r𝑅)
171, 2, 3, 13, 6quslem 13026 . 2 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
186adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Rng)
19 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
202eleq2d 2266 . . . . . . 7 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
2120adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
2219, 21mpbid 147 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
23 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
242eleq2d 2266 . . . . . . 7 (𝜑 → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2524adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2623, 25mpbid 147 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
27 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2827, 15rngacl 13574 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2918, 22, 26, 28syl3anc 1249 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
302eleq2d 2266 . . . . 5 (𝜑 → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
3130adantr 276 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
3229, 31mpbird 167 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
33 qusrng.e1 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
344, 11, 3, 32, 33ercpbl 13033 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
3527, 16rngcl 13576 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
3618, 22, 26, 35syl3anc 1249 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
372eleq2d 2266 . . . . 5 (𝜑 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3837adantr 276 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3936, 38mpbird 167 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
40 qusrng.e2 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
414, 11, 3, 39, 40ercpbl 13033 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
4214, 2, 15, 16, 17, 34, 41, 6imasrng 13588 1 (𝜑𝑈 ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763   class class class wbr 4034  cmpt 4095   Fn wfn 5254  cfv 5259  (class class class)co 5925   Er wer 6598  [cec 6599   / cqs 6600  Basecbs 12703  +gcplusg 12780  .rcmulr 12781   /s cqus 13002  Rngcrng 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-er 6601  df-ec 6603  df-qs 6607  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565
This theorem is referenced by:  qus2idrng  14157
  Copyright terms: Public domain W3C validator