Step | Hyp | Ref
| Expression |
1 | | qusrng.u |
. . 3
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
2 | | qusrng.v |
. . 3
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | eqid 2189 |
. . 3
⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) |
4 | | qusrng.r |
. . . 4
⊢ (𝜑 → ∼ Er 𝑉) |
5 | | basfn 12569 |
. . . . . 6
⊢ Base Fn
V |
6 | | qusrng.x |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Rng) |
7 | 6 | elexd 2765 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ V) |
8 | | funfvex 5551 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
9 | 8 | funfni 5335 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
10 | 5, 7, 9 | sylancr 414 |
. . . . 5
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
11 | 2, 10 | eqeltrd 2266 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ V) |
12 | | erex 6582 |
. . . 4
⊢ ( ∼ Er
𝑉 → (𝑉 ∈ V → ∼ ∈
V)) |
13 | 4, 11, 12 | sylc 62 |
. . 3
⊢ (𝜑 → ∼ ∈
V) |
14 | 1, 2, 3, 13, 6 | qusval 12797 |
. 2
⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )
“s 𝑅)) |
15 | | qusrng.p |
. 2
⊢ + =
(+g‘𝑅) |
16 | | qusrng.t |
. 2
⊢ · =
(.r‘𝑅) |
17 | 1, 2, 3, 13, 6 | quslem 12798 |
. 2
⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
18 | 6 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑅 ∈ Rng) |
19 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) |
20 | 2 | eleq2d 2259 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
21 | 20 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
22 | 19, 21 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
23 | | simprr 531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) |
24 | 2 | eleq2d 2259 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝑉 ↔ 𝑦 ∈ (Base‘𝑅))) |
25 | 24 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑦 ∈ 𝑉 ↔ 𝑦 ∈ (Base‘𝑅))) |
26 | 23, 25 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
27 | | eqid 2189 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
28 | 27, 15 | rngacl 13293 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
29 | 18, 22, 26, 28 | syl3anc 1249 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
30 | 2 | eleq2d 2259 |
. . . . 5
⊢ (𝜑 → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅))) |
31 | 30 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅))) |
32 | 29, 31 | mpbird 167 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
33 | | qusrng.e1 |
. . 3
⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) |
34 | 4, 11, 3, 32, 33 | ercpbl 12804 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) |
35 | 27, 16 | rngcl 13295 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
36 | 18, 22, 26, 35 | syl3anc 1249 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
37 | 2 | eleq2d 2259 |
. . . . 5
⊢ (𝜑 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅))) |
38 | 37 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅))) |
39 | 36, 38 | mpbird 167 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
40 | | qusrng.e2 |
. . 3
⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
41 | 4, 11, 3, 39, 40 | ercpbl 12804 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 · 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 · 𝑞)))) |
42 | 14, 2, 15, 16, 17, 34, 41, 6 | imasrng 13307 |
1
⊢ (𝜑 → 𝑈 ∈ Rng) |