ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrng GIF version

Theorem qusrng 13929
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 14037 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u (𝜑𝑈 = (𝑅 /s ))
qusrng.v (𝜑𝑉 = (Base‘𝑅))
qusrng.p + = (+g𝑅)
qusrng.t · = (.r𝑅)
qusrng.r (𝜑 Er 𝑉)
qusrng.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusrng.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusrng.x (𝜑𝑅 ∈ Rng)
Assertion
Ref Expression
qusrng (𝜑𝑈 ∈ Rng)
Distinct variable groups:   𝑅,𝑎,𝑏,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   · ,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem qusrng
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3 (𝜑𝑈 = (𝑅 /s ))
2 qusrng.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2229 . . 3 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusrng.r . . . 4 (𝜑 Er 𝑉)
5 basfn 13099 . . . . . 6 Base Fn V
6 qusrng.x . . . . . . 7 (𝜑𝑅 ∈ Rng)
76elexd 2813 . . . . . 6 (𝜑𝑅 ∈ V)
8 funfvex 5646 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
98funfni 5423 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
105, 7, 9sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
112, 10eqeltrd 2306 . . . 4 (𝜑𝑉 ∈ V)
12 erex 6712 . . . 4 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
134, 11, 12sylc 62 . . 3 (𝜑 ∈ V)
141, 2, 3, 13, 6qusval 13364 . 2 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
15 qusrng.p . 2 + = (+g𝑅)
16 qusrng.t . 2 · = (.r𝑅)
171, 2, 3, 13, 6quslem 13365 . 2 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
186adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Rng)
19 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
202eleq2d 2299 . . . . . . 7 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
2120adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
2219, 21mpbid 147 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
23 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
242eleq2d 2299 . . . . . . 7 (𝜑 → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2524adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2623, 25mpbid 147 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
27 eqid 2229 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2827, 15rngacl 13913 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2918, 22, 26, 28syl3anc 1271 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
302eleq2d 2299 . . . . 5 (𝜑 → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
3130adantr 276 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
3229, 31mpbird 167 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
33 qusrng.e1 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
344, 11, 3, 32, 33ercpbl 13372 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
3527, 16rngcl 13915 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
3618, 22, 26, 35syl3anc 1271 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
372eleq2d 2299 . . . . 5 (𝜑 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3837adantr 276 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3936, 38mpbird 167 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
40 qusrng.e2 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
414, 11, 3, 39, 40ercpbl 13372 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
4214, 2, 15, 16, 17, 34, 41, 6imasrng 13927 1 (𝜑𝑈 ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799   class class class wbr 4083  cmpt 4145   Fn wfn 5313  cfv 5318  (class class class)co 6007   Er wer 6685  [cec 6686   / cqs 6687  Basecbs 13040  +gcplusg 13118  .rcmulr 13119   /s cqus 13341  Rngcrng 13903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-er 6688  df-ec 6690  df-qs 6694  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-iimas 13343  df-qus 13344  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-cmn 13831  df-abl 13832  df-mgp 13892  df-rng 13904
This theorem is referenced by:  qus2idrng  14497
  Copyright terms: Public domain W3C validator