Step | Hyp | Ref
| Expression |
1 | | qusring2.u |
. . . 4
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
2 | | qusring2.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | eqid 2189 |
. . . 4
⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) |
4 | | qusring2.r |
. . . . 5
⊢ (𝜑 → ∼ Er 𝑉) |
5 | | basfn 12569 |
. . . . . . 7
⊢ Base Fn
V |
6 | | qusring2.x |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | 6 | elexd 2765 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ V) |
8 | | funfvex 5551 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
9 | 8 | funfni 5335 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
10 | 5, 7, 9 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
11 | 2, 10 | eqeltrd 2266 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ V) |
12 | | erex 6582 |
. . . . 5
⊢ ( ∼ Er
𝑉 → (𝑉 ∈ V → ∼ ∈
V)) |
13 | 4, 11, 12 | sylc 62 |
. . . 4
⊢ (𝜑 → ∼ ∈
V) |
14 | 1, 2, 3, 13, 6 | qusval 12797 |
. . 3
⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )
“s 𝑅)) |
15 | | qusring2.p |
. . 3
⊢ + =
(+g‘𝑅) |
16 | | qusring2.t |
. . 3
⊢ · =
(.r‘𝑅) |
17 | | qusring2.o |
. . 3
⊢ 1 =
(1r‘𝑅) |
18 | 1, 2, 3, 13, 6 | quslem 12798 |
. . 3
⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
19 | 6 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑅 ∈ Ring) |
20 | | simprl 529 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) |
21 | 2 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
22 | 20, 21 | eleqtrd 2268 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
23 | | simprr 531 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) |
24 | 23, 21 | eleqtrd 2268 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
25 | | eqid 2189 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
26 | 25, 15 | ringacl 13381 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
27 | 19, 22, 24, 26 | syl3anc 1249 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
28 | 27, 21 | eleqtrrd 2269 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
29 | | qusring2.e1 |
. . . 4
⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) |
30 | 4, 11, 3, 28, 29 | ercpbl 12804 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) |
31 | 25, 16 | ringcl 13364 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
32 | 19, 22, 24, 31 | syl3anc 1249 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
33 | 32, 21 | eleqtrrd 2269 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
34 | | qusring2.e2 |
. . . 4
⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
35 | 4, 11, 3, 33, 34 | ercpbl 12804 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 · 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 · 𝑞)))) |
36 | 14, 2, 15, 16, 17, 18, 30, 35, 6 | imasring 13411 |
. 2
⊢ (𝜑 → (𝑈 ∈ Ring ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) =
(1r‘𝑈))) |
37 | | ringsrg 13396 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
38 | 25, 17 | srgidcl 13327 |
. . . . . . . 8
⊢ (𝑅 ∈ SRing → 1 ∈
(Base‘𝑅)) |
39 | 6, 37, 38 | 3syl 17 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
40 | 39, 2 | eleqtrrd 2269 |
. . . . . 6
⊢ (𝜑 → 1 ∈ 𝑉) |
41 | 4, 11, 3, 40 | divsfvalg 12802 |
. . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) = [ 1 ] ∼
) |
42 | 41 | eqcomd 2195 |
. . . 4
⊢ (𝜑 → [ 1 ] ∼ = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1
)) |
43 | 42 | eqeq1d 2198 |
. . 3
⊢ (𝜑 → ([ 1 ] ∼ =
(1r‘𝑈)
↔ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) =
(1r‘𝑈))) |
44 | 43 | anbi2d 464 |
. 2
⊢ (𝜑 → ((𝑈 ∈ Ring ∧ [ 1 ] ∼ =
(1r‘𝑈))
↔ (𝑈 ∈ Ring ∧
((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 1 ) =
(1r‘𝑈)))) |
45 | 36, 44 | mpbird 167 |
1
⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ =
(1r‘𝑈))) |