ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusring2 GIF version

Theorem qusring2 13622
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring2.u (𝜑𝑈 = (𝑅 /s ))
qusring2.v (𝜑𝑉 = (Base‘𝑅))
qusring2.p + = (+g𝑅)
qusring2.t · = (.r𝑅)
qusring2.o 1 = (1r𝑅)
qusring2.r (𝜑 Er 𝑉)
qusring2.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusring2.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusring2.x (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
qusring2 (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
Distinct variable groups:   𝑞,𝑝, +   1 ,𝑝,𝑞   𝑎,𝑏,𝑝,𝑞,𝑈   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   · ,𝑝,𝑞   𝑅,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   1 (𝑎,𝑏)

Proof of Theorem qusring2
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusring2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2196 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusring2.r . . . . 5 (𝜑 Er 𝑉)
5 basfn 12736 . . . . . . 7 Base Fn V
6 qusring2.x . . . . . . . 8 (𝜑𝑅 ∈ Ring)
76elexd 2776 . . . . . . 7 (𝜑𝑅 ∈ V)
8 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
98funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
105, 7, 9sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
112, 10eqeltrd 2273 . . . . 5 (𝜑𝑉 ∈ V)
12 erex 6616 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
134, 11, 12sylc 62 . . . 4 (𝜑 ∈ V)
141, 2, 3, 13, 6qusval 12966 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
15 qusring2.p . . 3 + = (+g𝑅)
16 qusring2.t . . 3 · = (.r𝑅)
17 qusring2.o . . 3 1 = (1r𝑅)
181, 2, 3, 13, 6quslem 12967 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
196adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Ring)
20 simprl 529 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
212adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉 = (Base‘𝑅))
2220, 21eleqtrd 2275 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
23 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
2423, 21eleqtrd 2275 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
25 eqid 2196 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2625, 15ringacl 13586 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2719, 22, 24, 26syl3anc 1249 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2827, 21eleqtrrd 2276 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
29 qusring2.e1 . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
304, 11, 3, 28, 29ercpbl 12974 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
3125, 16ringcl 13569 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
3219, 22, 24, 31syl3anc 1249 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
3332, 21eleqtrrd 2276 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
34 qusring2.e2 . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
354, 11, 3, 33, 34ercpbl 12974 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
3614, 2, 15, 16, 17, 18, 30, 35, 6imasring 13620 . 2 (𝜑 → (𝑈 ∈ Ring ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈)))
37 ringsrg 13603 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
3825, 17srgidcl 13532 . . . . . . . 8 (𝑅 ∈ SRing → 1 ∈ (Base‘𝑅))
396, 37, 383syl 17 . . . . . . 7 (𝜑1 ∈ (Base‘𝑅))
4039, 2eleqtrrd 2276 . . . . . 6 (𝜑1𝑉)
414, 11, 3, 40divsfvalg 12972 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = [ 1 ] )
4241eqcomd 2202 . . . 4 (𝜑 → [ 1 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 1 ))
4342eqeq1d 2205 . . 3 (𝜑 → ([ 1 ] = (1r𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈)))
4443anbi2d 464 . 2 (𝜑 → ((𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)) ↔ (𝑈 ∈ Ring ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈))))
4536, 44mpbird 167 1 (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763   class class class wbr 4033  cmpt 4094   Fn wfn 5253  cfv 5258  (class class class)co 5922   Er wer 6589  [cec 6590   / cqs 6591  Basecbs 12678  +gcplusg 12755  .rcmulr 12756   /s cqus 12943  1rcur 13515  SRingcsrg 13519  Ringcrg 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554
This theorem is referenced by:  qus1  14082
  Copyright terms: Public domain W3C validator