![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusaddval | GIF version |
Description: The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
qusaddf.u | β’ (π β π = (π /s βΌ )) |
qusaddf.v | β’ (π β π = (Baseβπ )) |
qusaddf.r | β’ (π β βΌ Er π) |
qusaddf.z | β’ (π β π β π) |
qusaddf.e | β’ (π β ((π βΌ π β§ π βΌ π) β (π Β· π) βΌ (π Β· π))) |
qusaddf.c | β’ ((π β§ (π β π β§ π β π)) β (π Β· π) β π) |
qusaddf.p | β’ Β· = (+gβπ ) |
qusaddf.a | β’ β = (+gβπ) |
Ref | Expression |
---|---|
qusaddval | β’ ((π β§ π β π β§ π β π) β ([π] βΌ β [π] βΌ ) = [(π Β· π)] βΌ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusaddf.u | . 2 β’ (π β π = (π /s βΌ )) | |
2 | qusaddf.v | . 2 β’ (π β π = (Baseβπ )) | |
3 | qusaddf.r | . 2 β’ (π β βΌ Er π) | |
4 | qusaddf.z | . 2 β’ (π β π β π) | |
5 | qusaddf.e | . 2 β’ (π β ((π βΌ π β§ π βΌ π) β (π Β· π) βΌ (π Β· π))) | |
6 | qusaddf.c | . 2 β’ ((π β§ (π β π β§ π β π)) β (π Β· π) β π) | |
7 | eqid 2177 | . 2 β’ (π₯ β π β¦ [π₯] βΌ ) = (π₯ β π β¦ [π₯] βΌ ) | |
8 | basfn 12520 | . . . . . . 7 β’ Base Fn V | |
9 | 4 | elexd 2751 | . . . . . . 7 β’ (π β π β V) |
10 | funfvex 5533 | . . . . . . . 8 β’ ((Fun Base β§ π β dom Base) β (Baseβπ ) β V) | |
11 | 10 | funfni 5317 | . . . . . . 7 β’ ((Base Fn V β§ π β V) β (Baseβπ ) β V) |
12 | 8, 9, 11 | sylancr 414 | . . . . . 6 β’ (π β (Baseβπ ) β V) |
13 | 2, 12 | eqeltrd 2254 | . . . . 5 β’ (π β π β V) |
14 | erex 6559 | . . . . 5 β’ ( βΌ Er π β (π β V β βΌ β V)) | |
15 | 3, 13, 14 | sylc 62 | . . . 4 β’ (π β βΌ β V) |
16 | 1, 2, 7, 15, 4 | qusval 12744 | . . 3 β’ (π β π = ((π₯ β π β¦ [π₯] βΌ ) βs π )) |
17 | 1, 2, 7, 15, 4 | quslem 12745 | . . 3 β’ (π β (π₯ β π β¦ [π₯] βΌ ):πβontoβ(π / βΌ )) |
18 | qusaddf.p | . . 3 β’ Β· = (+gβπ ) | |
19 | qusaddf.a | . . 3 β’ β = (+gβπ) | |
20 | 16, 2, 17, 4, 18, 19 | imasplusg 12729 | . 2 β’ (π β β = βͺ π β π βͺ π β π {β¨β¨((π₯ β π β¦ [π₯] βΌ )βπ), ((π₯ β π β¦ [π₯] βΌ )βπ)β©, ((π₯ β π β¦ [π₯] βΌ )β(π Β· π))β©}) |
21 | plusgslid 12571 | . . . . 5 β’ (+g = Slot (+gβndx) β§ (+gβndx) β β) | |
22 | 21 | slotex 12489 | . . . 4 β’ (π β π β (+gβπ ) β V) |
23 | 4, 22 | syl 14 | . . 3 β’ (π β (+gβπ ) β V) |
24 | 18, 23 | eqeltrid 2264 | . 2 β’ (π β Β· β V) |
25 | 1, 2, 3, 4, 5, 6, 7, 20, 24 | qusaddvallemg 12752 | 1 β’ ((π β§ π β π β§ π β π) β ([π] βΌ β [π] βΌ ) = [(π Β· π)] βΌ ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 Vcvv 2738 class class class wbr 4004 β¦ cmpt 4065 Fn wfn 5212 βcfv 5217 (class class class)co 5875 Er wer 6532 [cec 6533 / cqs 6534 Basecbs 12462 +gcplusg 12536 /s cqus 12721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-pre-ltirr 7923 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-tp 3601 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-er 6535 df-ec 6537 df-qs 6541 df-pnf 7994 df-mnf 7995 df-ltxr 7997 df-inn 8920 df-2 8978 df-3 8979 df-ndx 12465 df-slot 12466 df-base 12468 df-plusg 12549 df-mulr 12550 df-iimas 12723 df-qus 12724 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |