| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusaddval | GIF version | ||
| Description: The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
| qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| qusaddf.p | ⊢ · = (+g‘𝑅) |
| qusaddf.a | ⊢ ∙ = (+g‘𝑈) |
| Ref | Expression |
|---|---|
| qusaddval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusaddf.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | qusaddf.r | . 2 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 4 | qusaddf.z | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | qusaddf.e | . 2 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
| 6 | qusaddf.c | . 2 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 7 | eqid 2229 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 8 | basfn 13077 | . . . . . . 7 ⊢ Base Fn V | |
| 9 | 4 | elexd 2813 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ V) |
| 10 | funfvex 5640 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 11 | 10 | funfni 5419 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 13 | 2, 12 | eqeltrd 2306 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
| 14 | erex 6694 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 15 | 3, 13, 14 | sylc 62 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
| 16 | 1, 2, 7, 15, 4 | qusval 13342 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
| 17 | 1, 2, 7, 15, 4 | quslem 13343 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
| 18 | qusaddf.p | . . 3 ⊢ · = (+g‘𝑅) | |
| 19 | qusaddf.a | . . 3 ⊢ ∙ = (+g‘𝑈) | |
| 20 | 16, 2, 17, 4, 18, 19 | imasplusg 13327 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑝), ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑞)〉, ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘(𝑝 · 𝑞))〉}) |
| 21 | plusgslid 13131 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 22 | 21 | slotex 13045 | . . . 4 ⊢ (𝑅 ∈ 𝑍 → (+g‘𝑅) ∈ V) |
| 23 | 4, 22 | syl 14 | . . 3 ⊢ (𝜑 → (+g‘𝑅) ∈ V) |
| 24 | 18, 23 | eqeltrid 2316 | . 2 ⊢ (𝜑 → · ∈ V) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 20, 24 | qusaddvallemg 13352 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 Vcvv 2799 class class class wbr 4082 ↦ cmpt 4144 Fn wfn 5309 ‘cfv 5314 (class class class)co 5994 Er wer 6667 [cec 6668 / cqs 6669 Basecbs 13018 +gcplusg 13096 /s cqus 13319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-er 6670 df-ec 6672 df-qs 6676 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-mulr 13110 df-iimas 13321 df-qus 13322 |
| This theorem is referenced by: qusadd 13757 |
| Copyright terms: Public domain | W3C validator |