![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusmulval | GIF version |
Description: The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
qusmulf.p | ⊢ · = (.r‘𝑅) |
qusmulf.a | ⊢ ∙ = (.r‘𝑈) |
Ref | Expression |
---|---|
qusmulval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusaddf.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusaddf.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | qusaddf.r | . 2 ⊢ (𝜑 → ∼ Er 𝑉) | |
4 | qusaddf.z | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | qusaddf.e | . 2 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
6 | qusaddf.c | . 2 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
7 | eqid 2193 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
8 | basfn 12679 | . . . . . . 7 ⊢ Base Fn V | |
9 | 4 | elexd 2773 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ V) |
10 | funfvex 5572 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
11 | 10 | funfni 5355 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
12 | 8, 9, 11 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
13 | 2, 12 | eqeltrd 2270 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
14 | erex 6613 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
15 | 3, 13, 14 | sylc 62 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
16 | 1, 2, 7, 15, 4 | qusval 12909 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
17 | 1, 2, 7, 15, 4 | quslem 12910 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
18 | qusmulf.p | . . 3 ⊢ · = (.r‘𝑅) | |
19 | qusmulf.a | . . 3 ⊢ ∙ = (.r‘𝑈) | |
20 | 16, 2, 17, 4, 18, 19 | imasmulr 12895 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑝), ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑞)〉, ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘(𝑝 · 𝑞))〉}) |
21 | mulrslid 12752 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
22 | 21 | slotex 12648 | . . . 4 ⊢ (𝑅 ∈ 𝑍 → (.r‘𝑅) ∈ V) |
23 | 4, 22 | syl 14 | . . 3 ⊢ (𝜑 → (.r‘𝑅) ∈ V) |
24 | 18, 23 | eqeltrid 2280 | . 2 ⊢ (𝜑 → · ∈ V) |
25 | 1, 2, 3, 4, 5, 6, 7, 20, 24 | qusaddvallemg 12919 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 class class class wbr 4030 ↦ cmpt 4091 Fn wfn 5250 ‘cfv 5255 (class class class)co 5919 Er wer 6586 [cec 6587 / cqs 6588 Basecbs 12621 .rcmulr 12699 /s cqus 12886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-er 6589 df-ec 6591 df-qs 6595 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-mulr 12712 df-iimas 12888 df-qus 12889 |
This theorem is referenced by: qusrhm 14027 qusmul2 14028 qusmulrng 14031 |
Copyright terms: Public domain | W3C validator |