ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp2 GIF version

Theorem qusgrp2 13420
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
qusgrp2.u (𝜑𝑈 = (𝑅 /s ))
qusgrp2.v (𝜑𝑉 = (Base‘𝑅))
qusgrp2.p (𝜑+ = (+g𝑅))
qusgrp2.r (𝜑 Er 𝑉)
qusgrp2.x (𝜑𝑅𝑋)
qusgrp2.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusgrp2.1 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
qusgrp2.2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
qusgrp2.3 (𝜑0𝑉)
qusgrp2.4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
qusgrp2.5 ((𝜑𝑥𝑉) → 𝑁𝑉)
qusgrp2.6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
Assertion
Ref Expression
qusgrp2 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧,   0 ,𝑎,𝑏,𝑝,𝑞,𝑥   𝑁,𝑝   𝑅,𝑝,𝑞   + ,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦   𝜑,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑈,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑧)   𝑅(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑁(𝑥,𝑦,𝑧,𝑞,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑧,𝑞,𝑝,𝑎,𝑏)   0 (𝑦,𝑧)

Proof of Theorem qusgrp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 qusgrp2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusgrp2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2204 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusgrp2.r . . . . 5 (𝜑 Er 𝑉)
5 basfn 12861 . . . . . . 7 Base Fn V
6 qusgrp2.x . . . . . . . 8 (𝜑𝑅𝑋)
76elexd 2784 . . . . . . 7 (𝜑𝑅 ∈ V)
8 funfvex 5592 . . . . . . . 8 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
98funfni 5375 . . . . . . 7 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
105, 7, 9sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
112, 10eqeltrd 2281 . . . . 5 (𝜑𝑉 ∈ V)
12 erex 6643 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
134, 11, 12sylc 62 . . . 4 (𝜑 ∈ V)
141, 2, 3, 13, 6qusval 13126 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
15 qusgrp2.p . . 3 (𝜑+ = (+g𝑅))
161, 2, 3, 13, 6quslem 13127 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
17 qusgrp2.1 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
18173expb 1206 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
19 qusgrp2.e . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
204, 11, 3, 18, 19ercpbl 13134 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
214adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → Er 𝑉)
22 qusgrp2.2 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
2321, 22erthi 6667 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → [((𝑥 + 𝑦) + 𝑧)] = [(𝑥 + (𝑦 + 𝑧))] )
2411adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 ∈ V)
2521, 22ercl 6630 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∈ 𝑉)
2621, 24, 3, 25divsfvalg 13132 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] )
2721, 22ercl2 6632 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + (𝑦 + 𝑧)) ∈ 𝑉)
2821, 24, 3, 27divsfvalg 13132 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] )
2923, 26, 283eqtr4d 2247 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))))
30 qusgrp2.3 . . 3 (𝜑0𝑉)
314adantr 276 . . . . 5 ((𝜑𝑥𝑉) → Er 𝑉)
32 qusgrp2.4 . . . . 5 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
3331, 32erthi 6667 . . . 4 ((𝜑𝑥𝑉) → [( 0 + 𝑥)] = [𝑥] )
3411adantr 276 . . . . 5 ((𝜑𝑥𝑉) → 𝑉 ∈ V)
3531, 32ercl 6630 . . . . 5 ((𝜑𝑥𝑉) → ( 0 + 𝑥) ∈ 𝑉)
3631, 34, 3, 35divsfvalg 13132 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = [( 0 + 𝑥)] )
37 simpr 110 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
3831, 34, 3, 37divsfvalg 13132 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘𝑥) = [𝑥] )
3933, 36, 383eqtr4d 2247 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘𝑥))
40 qusgrp2.5 . . 3 ((𝜑𝑥𝑉) → 𝑁𝑉)
41 qusgrp2.6 . . . . . 6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
4231, 41ersym 6631 . . . . 5 ((𝜑𝑥𝑉) → 0 (𝑁 + 𝑥))
4331, 42erthi 6667 . . . 4 ((𝜑𝑥𝑉) → [ 0 ] = [(𝑁 + 𝑥)] )
4430adantr 276 . . . . 5 ((𝜑𝑥𝑉) → 0𝑉)
4531, 34, 3, 44divsfvalg 13132 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
4631, 41ercl 6630 . . . . 5 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) ∈ 𝑉)
4731, 34, 3, 46divsfvalg 13132 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] )
4843, 45, 473eqtr4rd 2248 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
4914, 2, 15, 16, 20, 6, 17, 29, 30, 39, 40, 48imasgrp2 13417 . 2 (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
504, 11, 3, 30divsfvalg 13132 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
5150eqcomd 2210 . . . 4 (𝜑 → [ 0 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
5251eqeq1d 2213 . . 3 (𝜑 → ([ 0 ] = (0g𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
5352anbi2d 464 . 2 (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)) ↔ (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈))))
5449, 53mpbird 167 1 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  Vcvv 2771   class class class wbr 4043  cmpt 4104   Fn wfn 5265  cfv 5270  (class class class)co 5943   Er wer 6616  [cec 6617   / cqs 6618  Basecbs 12803  +gcplusg 12880  0gc0g 13059   /s cqus 13103  Grpcgrp 13303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-er 6619  df-ec 6621  df-qs 6625  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-mulr 12894  df-0g 13061  df-iimas 13105  df-qus 13106  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306
This theorem is referenced by:  qusgrp  13539
  Copyright terms: Public domain W3C validator