ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp2 GIF version

Theorem qusgrp2 13243
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
qusgrp2.u (𝜑𝑈 = (𝑅 /s ))
qusgrp2.v (𝜑𝑉 = (Base‘𝑅))
qusgrp2.p (𝜑+ = (+g𝑅))
qusgrp2.r (𝜑 Er 𝑉)
qusgrp2.x (𝜑𝑅𝑋)
qusgrp2.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusgrp2.1 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
qusgrp2.2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
qusgrp2.3 (𝜑0𝑉)
qusgrp2.4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
qusgrp2.5 ((𝜑𝑥𝑉) → 𝑁𝑉)
qusgrp2.6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
Assertion
Ref Expression
qusgrp2 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧,   0 ,𝑎,𝑏,𝑝,𝑞,𝑥   𝑁,𝑝   𝑅,𝑝,𝑞   + ,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦   𝜑,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑉,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧   𝑈,𝑎,𝑏,𝑝,𝑞,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑧)   𝑅(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑁(𝑥,𝑦,𝑧,𝑞,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑧,𝑞,𝑝,𝑎,𝑏)   0 (𝑦,𝑧)

Proof of Theorem qusgrp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 qusgrp2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusgrp2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2196 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusgrp2.r . . . . 5 (𝜑 Er 𝑉)
5 basfn 12736 . . . . . . 7 Base Fn V
6 qusgrp2.x . . . . . . . 8 (𝜑𝑅𝑋)
76elexd 2776 . . . . . . 7 (𝜑𝑅 ∈ V)
8 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
98funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
105, 7, 9sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
112, 10eqeltrd 2273 . . . . 5 (𝜑𝑉 ∈ V)
12 erex 6616 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
134, 11, 12sylc 62 . . . 4 (𝜑 ∈ V)
141, 2, 3, 13, 6qusval 12966 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
15 qusgrp2.p . . 3 (𝜑+ = (+g𝑅))
161, 2, 3, 13, 6quslem 12967 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
17 qusgrp2.1 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
18173expb 1206 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
19 qusgrp2.e . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
204, 11, 3, 18, 19ercpbl 12974 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
214adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → Er 𝑉)
22 qusgrp2.2 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))
2321, 22erthi 6640 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → [((𝑥 + 𝑦) + 𝑧)] = [(𝑥 + (𝑦 + 𝑧))] )
2411adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 ∈ V)
2521, 22ercl 6603 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∈ 𝑉)
2621, 24, 3, 25divsfvalg 12972 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] )
2721, 22ercl2 6605 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + (𝑦 + 𝑧)) ∈ 𝑉)
2821, 24, 3, 27divsfvalg 12972 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] )
2923, 26, 283eqtr4d 2239 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑢𝑉 ↦ [𝑢] )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑥 + (𝑦 + 𝑧))))
30 qusgrp2.3 . . 3 (𝜑0𝑉)
314adantr 276 . . . . 5 ((𝜑𝑥𝑉) → Er 𝑉)
32 qusgrp2.4 . . . . 5 ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)
3331, 32erthi 6640 . . . 4 ((𝜑𝑥𝑉) → [( 0 + 𝑥)] = [𝑥] )
3411adantr 276 . . . . 5 ((𝜑𝑥𝑉) → 𝑉 ∈ V)
3531, 32ercl 6603 . . . . 5 ((𝜑𝑥𝑉) → ( 0 + 𝑥) ∈ 𝑉)
3631, 34, 3, 35divsfvalg 12972 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = [( 0 + 𝑥)] )
37 simpr 110 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
3831, 34, 3, 37divsfvalg 12972 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘𝑥) = [𝑥] )
3933, 36, 383eqtr4d 2239 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘( 0 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘𝑥))
40 qusgrp2.5 . . 3 ((𝜑𝑥𝑉) → 𝑁𝑉)
41 qusgrp2.6 . . . . . 6 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )
4231, 41ersym 6604 . . . . 5 ((𝜑𝑥𝑉) → 0 (𝑁 + 𝑥))
4331, 42erthi 6640 . . . 4 ((𝜑𝑥𝑉) → [ 0 ] = [(𝑁 + 𝑥)] )
4430adantr 276 . . . . 5 ((𝜑𝑥𝑉) → 0𝑉)
4531, 34, 3, 44divsfvalg 12972 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
4631, 41ercl 6603 . . . . 5 ((𝜑𝑥𝑉) → (𝑁 + 𝑥) ∈ 𝑉)
4731, 34, 3, 46divsfvalg 12972 . . . 4 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] )
4843, 45, 473eqtr4rd 2240 . . 3 ((𝜑𝑥𝑉) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑁 + 𝑥)) = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
4914, 2, 15, 16, 20, 6, 17, 29, 30, 39, 40, 48imasgrp2 13240 . 2 (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
504, 11, 3, 30divsfvalg 12972 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = [ 0 ] )
5150eqcomd 2202 . . . 4 (𝜑 → [ 0 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 0 ))
5251eqeq1d 2205 . . 3 (𝜑 → ([ 0 ] = (0g𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈)))
5352anbi2d 464 . 2 (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)) ↔ (𝑈 ∈ Grp ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 0 ) = (0g𝑈))))
5449, 53mpbird 167 1 (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763   class class class wbr 4033  cmpt 4094   Fn wfn 5253  cfv 5258  (class class class)co 5922   Er wer 6589  [cec 6590   / cqs 6591  Basecbs 12678  +gcplusg 12755  0gc0g 12927   /s cqus 12943  Grpcgrp 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135
This theorem is referenced by:  qusgrp  13362
  Copyright terms: Public domain W3C validator