| Step | Hyp | Ref
 | Expression | 
| 1 |   | qusgrp2.u | 
. . . 4
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | 
| 2 |   | qusgrp2.v | 
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | 
| 3 |   | eqid 2196 | 
. . . 4
⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) | 
| 4 |   | qusgrp2.r | 
. . . . 5
⊢ (𝜑 → ∼ Er 𝑉) | 
| 5 |   | basfn 12736 | 
. . . . . . 7
⊢ Base Fn
V | 
| 6 |   | qusgrp2.x | 
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ 𝑋) | 
| 7 | 6 | elexd 2776 | 
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ V) | 
| 8 |   | funfvex 5575 | 
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 9 | 8 | funfni 5358 | 
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 10 | 5, 7, 9 | sylancr 414 | 
. . . . . 6
⊢ (𝜑 → (Base‘𝑅) ∈ V) | 
| 11 | 2, 10 | eqeltrd 2273 | 
. . . . 5
⊢ (𝜑 → 𝑉 ∈ V) | 
| 12 |   | erex 6616 | 
. . . . 5
⊢ ( ∼ Er
𝑉 → (𝑉 ∈ V → ∼ ∈
V)) | 
| 13 | 4, 11, 12 | sylc 62 | 
. . . 4
⊢ (𝜑 → ∼ ∈
V) | 
| 14 | 1, 2, 3, 13, 6 | qusval 12966 | 
. . 3
⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )
“s 𝑅)) | 
| 15 |   | qusgrp2.p | 
. . 3
⊢ (𝜑 → + =
(+g‘𝑅)) | 
| 16 | 1, 2, 3, 13, 6 | quslem 12967 | 
. . 3
⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) | 
| 17 |   | qusgrp2.1 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) | 
| 18 | 17 | 3expb 1206 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) | 
| 19 |   | qusgrp2.e | 
. . . 4
⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) | 
| 20 | 4, 11, 3, 18, 19 | ercpbl 12974 | 
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) | 
| 21 | 4 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ∼ Er 𝑉) | 
| 22 |   | qusgrp2.2 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) | 
| 23 | 21, 22 | erthi 6640 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → [((𝑥 + 𝑦) + 𝑧)] ∼ = [(𝑥 + (𝑦 + 𝑧))] ∼ ) | 
| 24 | 11 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 ∈ V) | 
| 25 | 21, 22 | ercl 6603 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∈ 𝑉) | 
| 26 | 21, 24, 3, 25 | divsfvalg 12972 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] ∼ ) | 
| 27 | 21, 22 | ercl2 6605 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + (𝑦 + 𝑧)) ∈ 𝑉) | 
| 28 | 21, 24, 3, 27 | divsfvalg 12972 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] ∼ ) | 
| 29 | 23, 26, 28 | 3eqtr4d 2239 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑥 + (𝑦 + 𝑧)))) | 
| 30 |   | qusgrp2.3 | 
. . 3
⊢ (𝜑 → 0 ∈ 𝑉) | 
| 31 | 4 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ∼ Er 𝑉) | 
| 32 |   | qusgrp2.4 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) | 
| 33 | 31, 32 | erthi 6640 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [( 0 + 𝑥)] ∼ = [𝑥] ∼ ) | 
| 34 | 11 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑉 ∈ V) | 
| 35 | 31, 32 | ercl 6603 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∈ 𝑉) | 
| 36 | 31, 34, 3, 35 | divsfvalg 12972 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘( 0 + 𝑥)) = [( 0 + 𝑥)] ∼ ) | 
| 37 |   | simpr 110 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) | 
| 38 | 31, 34, 3, 37 | divsfvalg 12972 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑥) = [𝑥] ∼ ) | 
| 39 | 33, 36, 38 | 3eqtr4d 2239 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘( 0 + 𝑥)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑥)) | 
| 40 |   | qusgrp2.5 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) | 
| 41 |   | qusgrp2.6 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) | 
| 42 | 31, 41 | ersym 6604 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ∼ (𝑁 + 𝑥)) | 
| 43 | 31, 42 | erthi 6640 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [ 0 ] ∼ = [(𝑁 + 𝑥)] ∼ ) | 
| 44 | 30 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑉) | 
| 45 | 31, 34, 3, 44 | divsfvalg 12972 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = [ 0 ] ∼
) | 
| 46 | 31, 41 | ercl 6603 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∈ 𝑉) | 
| 47 | 31, 34, 3, 46 | divsfvalg 12972 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] ∼ ) | 
| 48 | 43, 45, 47 | 3eqtr4rd 2240 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑁 + 𝑥)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0
)) | 
| 49 | 14, 2, 15, 16, 20, 6, 17, 29, 30, 39, 40, 48 | imasgrp2 13240 | 
. 2
⊢ (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) =
(0g‘𝑈))) | 
| 50 | 4, 11, 3, 30 | divsfvalg 12972 | 
. . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = [ 0 ] ∼
) | 
| 51 | 50 | eqcomd 2202 | 
. . . 4
⊢ (𝜑 → [ 0 ] ∼ = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0
)) | 
| 52 | 51 | eqeq1d 2205 | 
. . 3
⊢ (𝜑 → ([ 0 ] ∼ =
(0g‘𝑈)
↔ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) =
(0g‘𝑈))) | 
| 53 | 52 | anbi2d 464 | 
. 2
⊢ (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] ∼ =
(0g‘𝑈))
↔ (𝑈 ∈ Grp ∧
((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) =
(0g‘𝑈)))) | 
| 54 | 49, 53 | mpbird 167 | 
1
⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ =
(0g‘𝑈))) |