Step | Hyp | Ref
| Expression |
1 | | qusgrp2.u |
. . . 4
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
2 | | qusgrp2.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | eqid 2189 |
. . . 4
⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) |
4 | | qusgrp2.r |
. . . . 5
⊢ (𝜑 → ∼ Er 𝑉) |
5 | | basfn 12565 |
. . . . . . 7
⊢ Base Fn
V |
6 | | qusgrp2.x |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ 𝑋) |
7 | 6 | elexd 2765 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ V) |
8 | | funfvex 5548 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
9 | 8 | funfni 5332 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
10 | 5, 7, 9 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
11 | 2, 10 | eqeltrd 2266 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ V) |
12 | | erex 6578 |
. . . . 5
⊢ ( ∼ Er
𝑉 → (𝑉 ∈ V → ∼ ∈
V)) |
13 | 4, 11, 12 | sylc 62 |
. . . 4
⊢ (𝜑 → ∼ ∈
V) |
14 | 1, 2, 3, 13, 6 | qusval 12793 |
. . 3
⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )
“s 𝑅)) |
15 | | qusgrp2.p |
. . 3
⊢ (𝜑 → + =
(+g‘𝑅)) |
16 | 1, 2, 3, 13, 6 | quslem 12794 |
. . 3
⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
17 | | qusgrp2.1 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) |
18 | 17 | 3expb 1206 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
19 | | qusgrp2.e |
. . . 4
⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) |
20 | 4, 11, 3, 18, 19 | ercpbl 12800 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) |
21 | 4 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ∼ Er 𝑉) |
22 | | qusgrp2.2 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) |
23 | 21, 22 | erthi 6602 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → [((𝑥 + 𝑦) + 𝑧)] ∼ = [(𝑥 + (𝑦 + 𝑧))] ∼ ) |
24 | 11 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 ∈ V) |
25 | 21, 22 | ercl 6565 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∈ 𝑉) |
26 | 21, 24, 3, 25 | divsfvalg 12798 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘((𝑥 + 𝑦) + 𝑧)) = [((𝑥 + 𝑦) + 𝑧)] ∼ ) |
27 | 21, 22 | ercl2 6567 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + (𝑦 + 𝑧)) ∈ 𝑉) |
28 | 21, 24, 3, 27 | divsfvalg 12798 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑥 + (𝑦 + 𝑧))) = [(𝑥 + (𝑦 + 𝑧))] ∼ ) |
29 | 23, 26, 28 | 3eqtr4d 2232 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘((𝑥 + 𝑦) + 𝑧)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑥 + (𝑦 + 𝑧)))) |
30 | | qusgrp2.3 |
. . 3
⊢ (𝜑 → 0 ∈ 𝑉) |
31 | 4 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ∼ Er 𝑉) |
32 | | qusgrp2.4 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) |
33 | 31, 32 | erthi 6602 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [( 0 + 𝑥)] ∼ = [𝑥] ∼ ) |
34 | 11 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑉 ∈ V) |
35 | 31, 32 | ercl 6565 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∈ 𝑉) |
36 | 31, 34, 3, 35 | divsfvalg 12798 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘( 0 + 𝑥)) = [( 0 + 𝑥)] ∼ ) |
37 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
38 | 31, 34, 3, 37 | divsfvalg 12798 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑥) = [𝑥] ∼ ) |
39 | 33, 36, 38 | 3eqtr4d 2232 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘( 0 + 𝑥)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑥)) |
40 | | qusgrp2.5 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
41 | | qusgrp2.6 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) |
42 | 31, 41 | ersym 6566 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ∼ (𝑁 + 𝑥)) |
43 | 31, 42 | erthi 6602 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [ 0 ] ∼ = [(𝑁 + 𝑥)] ∼ ) |
44 | 30 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑉) |
45 | 31, 34, 3, 44 | divsfvalg 12798 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = [ 0 ] ∼
) |
46 | 31, 41 | ercl 6565 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∈ 𝑉) |
47 | 31, 34, 3, 46 | divsfvalg 12798 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑁 + 𝑥)) = [(𝑁 + 𝑥)] ∼ ) |
48 | 43, 45, 47 | 3eqtr4rd 2233 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑁 + 𝑥)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0
)) |
49 | 14, 2, 15, 16, 20, 6, 17, 29, 30, 39, 40, 48 | imasgrp2 13045 |
. 2
⊢ (𝜑 → (𝑈 ∈ Grp ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) =
(0g‘𝑈))) |
50 | 4, 11, 3, 30 | divsfvalg 12798 |
. . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) = [ 0 ] ∼
) |
51 | 50 | eqcomd 2195 |
. . . 4
⊢ (𝜑 → [ 0 ] ∼ = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0
)) |
52 | 51 | eqeq1d 2198 |
. . 3
⊢ (𝜑 → ([ 0 ] ∼ =
(0g‘𝑈)
↔ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) =
(0g‘𝑈))) |
53 | 52 | anbi2d 464 |
. 2
⊢ (𝜑 → ((𝑈 ∈ Grp ∧ [ 0 ] ∼ =
(0g‘𝑈))
↔ (𝑈 ∈ Grp ∧
((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘ 0 ) =
(0g‘𝑈)))) |
54 | 49, 53 | mpbird 167 |
1
⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ =
(0g‘𝑈))) |