| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusaddf | GIF version | ||
| Description: The addition in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
| qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| qusaddf.p | ⊢ · = (+g‘𝑅) |
| qusaddf.a | ⊢ ∙ = (+g‘𝑈) |
| Ref | Expression |
|---|---|
| qusaddf | ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusaddf.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | qusaddf.r | . 2 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 4 | qusaddf.z | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | qusaddf.e | . 2 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
| 6 | qusaddf.c | . 2 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 7 | eqid 2204 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 8 | basfn 12832 | . . . . . . 7 ⊢ Base Fn V | |
| 9 | 4 | elexd 2784 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ V) |
| 10 | funfvex 5592 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 11 | 10 | funfni 5375 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 13 | 2, 12 | eqeltrd 2281 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
| 14 | erex 6643 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 15 | 3, 13, 14 | sylc 62 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
| 16 | 1, 2, 7, 15, 4 | qusval 13097 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
| 17 | 1, 2, 7, 15, 4 | quslem 13098 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
| 18 | qusaddf.p | . . 3 ⊢ · = (+g‘𝑅) | |
| 19 | qusaddf.a | . . 3 ⊢ ∙ = (+g‘𝑈) | |
| 20 | 16, 2, 17, 4, 18, 19 | imasplusg 13082 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑝), ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑞)〉, ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘(𝑝 · 𝑞))〉}) |
| 21 | plusgslid 12886 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 22 | 21 | slotex 12801 | . . . 4 ⊢ (𝑅 ∈ 𝑍 → (+g‘𝑅) ∈ V) |
| 23 | 4, 22 | syl 14 | . . 3 ⊢ (𝜑 → (+g‘𝑅) ∈ V) |
| 24 | 18, 23 | eqeltrid 2291 | . 2 ⊢ (𝜑 → · ∈ V) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 20, 24 | qusaddflemg 13108 | 1 ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 Vcvv 2771 class class class wbr 4043 ↦ cmpt 4104 × cxp 4672 Fn wfn 5265 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 Er wer 6616 [cec 6617 / cqs 6618 Basecbs 12774 +gcplusg 12851 /s cqus 13074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-er 6619 df-ec 6621 df-qs 6625 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-mulr 12865 df-iimas 13076 df-qus 13077 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |