![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frecuzrdg0t | GIF version |
Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.) |
Ref | Expression |
---|---|
frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
frecuzrdg0t.ran | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
Ref | Expression |
---|---|
frecuzrdg0t | ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecuzrdgrclt.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frecuzrdgrclt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | frecuzrdgrclt.t | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
4 | frecuzrdgrclt.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | frecuzrdgrclt.r | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
6 | frecuzrdg0t.ran | . . . 4 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtclt 9977 | . . 3 ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
8 | ffun 5198 | . . 3 ⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑃) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → Fun 𝑃) |
10 | 5 | fveq1i 5341 | . . . . 5 ⊢ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) |
11 | opexg 4079 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → 〈𝐶, 𝐴〉 ∈ V) | |
12 | 1, 2, 11 | syl2anc 404 | . . . . . 6 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ V) |
13 | frec0g 6200 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) | |
14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) |
15 | 10, 14 | syl5eq 2139 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = 〈𝐶, 𝐴〉) |
16 | 1, 2, 3, 4, 5 | frecuzrdgrclt 9971 | . . . . . 6 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
17 | ffn 5195 | . . . . . 6 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) | |
18 | 16, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 Fn ω) |
19 | peano1 4437 | . . . . 5 ⊢ ∅ ∈ ω | |
20 | fnfvelrn 5470 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
21 | 18, 19, 20 | sylancl 405 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
22 | 15, 21 | eqeltrrd 2172 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ ran 𝑅) |
23 | 22, 6 | eleqtrrd 2174 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑃) |
24 | funopfv 5379 | . 2 ⊢ (Fun 𝑃 → (〈𝐶, 𝐴〉 ∈ 𝑃 → (𝑃‘𝐶) = 𝐴)) | |
25 | 9, 23, 24 | sylc 62 | 1 ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 Vcvv 2633 ⊆ wss 3013 ∅c0 3302 〈cop 3469 ωcom 4433 × cxp 4465 ran crn 4468 Fun wfun 5043 Fn wfn 5044 ⟶wf 5045 ‘cfv 5049 (class class class)co 5690 ↦ cmpt2 5692 freccfrec 6193 1c1 7448 + caddc 7450 ℤcz 8848 ℤ≥cuz 9118 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-frec 6194 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 df-uz 9119 |
This theorem is referenced by: seq3-1 10014 |
Copyright terms: Public domain | W3C validator |