ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0t GIF version

Theorem frecuzrdg0t 10639
Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdg0t.ran (𝜑𝑃 = ran 𝑅)
Assertion
Ref Expression
frecuzrdg0t (𝜑 → (𝑃𝐶) = 𝐴)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑃(𝑥,𝑦)

Proof of Theorem frecuzrdg0t
StepHypRef Expression
1 frecuzrdgrclt.c . . . 4 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . 4 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . 4 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . 4 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 frecuzrdg0t.ran . . . 4 (𝜑𝑃 = ran 𝑅)
71, 2, 3, 4, 5, 6frecuzrdgtclt 10638 . . 3 (𝜑𝑃:(ℤ𝐶)⟶𝑆)
8 ffun 5475 . . 3 (𝑃:(ℤ𝐶)⟶𝑆 → Fun 𝑃)
97, 8syl 14 . 2 (𝜑 → Fun 𝑃)
105fveq1i 5627 . . . . 5 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅)
11 opexg 4313 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ V)
121, 2, 11syl2anc 411 . . . . . 6 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ V)
13 frec0g 6541 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
1412, 13syl 14 . . . . 5 (𝜑 → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
1510, 14eqtrid 2274 . . . 4 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
161, 2, 3, 4, 5frecuzrdgrclt 10632 . . . . . 6 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
17 ffn 5472 . . . . . 6 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
1816, 17syl 14 . . . . 5 (𝜑𝑅 Fn ω)
19 peano1 4685 . . . . 5 ∅ ∈ ω
20 fnfvelrn 5766 . . . . 5 ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅)
2118, 19, 20sylancl 413 . . . 4 (𝜑 → (𝑅‘∅) ∈ ran 𝑅)
2215, 21eqeltrrd 2307 . . 3 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ran 𝑅)
2322, 6eleqtrrd 2309 . 2 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ 𝑃)
24 funopfv 5670 . 2 (Fun 𝑃 → (⟨𝐶, 𝐴⟩ ∈ 𝑃 → (𝑃𝐶) = 𝐴))
259, 23, 24sylc 62 1 (𝜑 → (𝑃𝐶) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  c0 3491  cop 3669  ωcom 4681   × cxp 4716  ran crn 4719  Fun wfun 5311   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  cmpo 6002  freccfrec 6534  1c1 7996   + caddc 7998  cz 9442  cuz 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719
This theorem is referenced by:  seq3-1  10679  seq1cd  10686
  Copyright terms: Public domain W3C validator