| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdg0t | GIF version | ||
| Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.) |
| Ref | Expression |
|---|---|
| frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| frecuzrdg0t.ran | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
| Ref | Expression |
|---|---|
| frecuzrdg0t | ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecuzrdgrclt.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frecuzrdgrclt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | frecuzrdgrclt.t | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
| 4 | frecuzrdgrclt.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 5 | frecuzrdgrclt.r | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
| 6 | frecuzrdg0t.ran | . . . 4 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtclt 10564 | . . 3 ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
| 8 | ffun 5427 | . . 3 ⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑃) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → Fun 𝑃) |
| 10 | 5 | fveq1i 5576 | . . . . 5 ⊢ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) |
| 11 | opexg 4271 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → 〈𝐶, 𝐴〉 ∈ V) | |
| 12 | 1, 2, 11 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ V) |
| 13 | frec0g 6482 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) |
| 15 | 10, 14 | eqtrid 2249 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = 〈𝐶, 𝐴〉) |
| 16 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10558 | . . . . . 6 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
| 17 | ffn 5424 | . . . . . 6 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) | |
| 18 | 16, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 Fn ω) |
| 19 | peano1 4641 | . . . . 5 ⊢ ∅ ∈ ω | |
| 20 | fnfvelrn 5711 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 21 | 18, 19, 20 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
| 22 | 15, 21 | eqeltrrd 2282 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ ran 𝑅) |
| 23 | 22, 6 | eleqtrrd 2284 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑃) |
| 24 | funopfv 5617 | . 2 ⊢ (Fun 𝑃 → (〈𝐶, 𝐴〉 ∈ 𝑃 → (𝑃‘𝐶) = 𝐴)) | |
| 25 | 9, 23, 24 | sylc 62 | 1 ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ⊆ wss 3165 ∅c0 3459 〈cop 3635 ωcom 4637 × cxp 4672 ran crn 4675 Fun wfun 5264 Fn wfn 5265 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 ∈ cmpo 5945 freccfrec 6475 1c1 7925 + caddc 7927 ℤcz 9371 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 |
| This theorem is referenced by: seq3-1 10605 seq1cd 10612 |
| Copyright terms: Public domain | W3C validator |