| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdg0t | GIF version | ||
| Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.) |
| Ref | Expression |
|---|---|
| frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| frecuzrdg0t.ran | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
| Ref | Expression |
|---|---|
| frecuzrdg0t | ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecuzrdgrclt.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frecuzrdgrclt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | frecuzrdgrclt.t | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
| 4 | frecuzrdgrclt.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 5 | frecuzrdgrclt.r | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
| 6 | frecuzrdg0t.ran | . . . 4 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtclt 10588 | . . 3 ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
| 8 | ffun 5438 | . . 3 ⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑃) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → Fun 𝑃) |
| 10 | 5 | fveq1i 5590 | . . . . 5 ⊢ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) |
| 11 | opexg 4280 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → 〈𝐶, 𝐴〉 ∈ V) | |
| 12 | 1, 2, 11 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ V) |
| 13 | frec0g 6496 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) |
| 15 | 10, 14 | eqtrid 2251 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = 〈𝐶, 𝐴〉) |
| 16 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10582 | . . . . . 6 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
| 17 | ffn 5435 | . . . . . 6 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) | |
| 18 | 16, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 Fn ω) |
| 19 | peano1 4650 | . . . . 5 ⊢ ∅ ∈ ω | |
| 20 | fnfvelrn 5725 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 21 | 18, 19, 20 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
| 22 | 15, 21 | eqeltrrd 2284 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ ran 𝑅) |
| 23 | 22, 6 | eleqtrrd 2286 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑃) |
| 24 | funopfv 5631 | . 2 ⊢ (Fun 𝑃 → (〈𝐶, 𝐴〉 ∈ 𝑃 → (𝑃‘𝐶) = 𝐴)) | |
| 25 | 9, 23, 24 | sylc 62 | 1 ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 ∅c0 3464 〈cop 3641 ωcom 4646 × cxp 4681 ran crn 4684 Fun wfun 5274 Fn wfn 5275 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 ∈ cmpo 5959 freccfrec 6489 1c1 7946 + caddc 7948 ℤcz 9392 ℤ≥cuz 9668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 |
| This theorem is referenced by: seq3-1 10629 seq1cd 10636 |
| Copyright terms: Public domain | W3C validator |