| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdg0t | GIF version | ||
| Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.) |
| Ref | Expression |
|---|---|
| frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| frecuzrdg0t.ran | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
| Ref | Expression |
|---|---|
| frecuzrdg0t | ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecuzrdgrclt.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frecuzrdgrclt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | frecuzrdgrclt.t | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
| 4 | frecuzrdgrclt.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 5 | frecuzrdgrclt.r | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
| 6 | frecuzrdg0t.ran | . . . 4 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtclt 10530 | . . 3 ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
| 8 | ffun 5413 | . . 3 ⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑃) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → Fun 𝑃) |
| 10 | 5 | fveq1i 5562 | . . . . 5 ⊢ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) |
| 11 | opexg 4262 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → 〈𝐶, 𝐴〉 ∈ V) | |
| 12 | 1, 2, 11 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ V) |
| 13 | frec0g 6464 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) |
| 15 | 10, 14 | eqtrid 2241 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = 〈𝐶, 𝐴〉) |
| 16 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10524 | . . . . . 6 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
| 17 | ffn 5410 | . . . . . 6 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) | |
| 18 | 16, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 Fn ω) |
| 19 | peano1 4631 | . . . . 5 ⊢ ∅ ∈ ω | |
| 20 | fnfvelrn 5697 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 21 | 18, 19, 20 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
| 22 | 15, 21 | eqeltrrd 2274 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ ran 𝑅) |
| 23 | 22, 6 | eleqtrrd 2276 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑃) |
| 24 | funopfv 5603 | . 2 ⊢ (Fun 𝑃 → (〈𝐶, 𝐴〉 ∈ 𝑃 → (𝑃‘𝐶) = 𝐴)) | |
| 25 | 9, 23, 24 | sylc 62 | 1 ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ∅c0 3451 〈cop 3626 ωcom 4627 × cxp 4662 ran crn 4665 Fun wfun 5253 Fn wfn 5254 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 ∈ cmpo 5927 freccfrec 6457 1c1 7897 + caddc 7899 ℤcz 9343 ℤ≥cuz 9618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 |
| This theorem is referenced by: seq3-1 10571 seq1cd 10578 |
| Copyright terms: Public domain | W3C validator |