ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuctlem GIF version

Theorem frecuzrdgsuctlem 9795
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9771 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 29-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgsuctlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgsuctlem.ran (𝜑𝑃 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgsuctlem ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑃(𝑥,𝑦)

Proof of Theorem frecuzrdgsuctlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 frecuzrdgsuctlem.ran . . . . . 6 (𝜑𝑃 = ran 𝑅)
71, 2, 3, 4, 5, 6frecuzrdgtclt 9793 . . . . 5 (𝜑𝑃:(ℤ𝐶)⟶𝑆)
87adantr 270 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑃:(ℤ𝐶)⟶𝑆)
9 ffun 5150 . . . 4 (𝑃:(ℤ𝐶)⟶𝑆 → Fun 𝑃)
108, 9syl 14 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → Fun 𝑃)
11 1st2nd2 5927 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1211adantl 271 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1312fveq2d 5293 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩))
14 df-ov 5637 . . . . . . . . . . . . 13 ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩)
1513, 14syl6eqr 2138 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)))
16 xp1st 5918 . . . . . . . . . . . . . 14 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (1st𝑧) ∈ (ℤ𝐶))
1716adantl 271 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (1st𝑧) ∈ (ℤ𝐶))
183ad2antrr 472 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑆𝑇)
19 xp2nd 5919 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (2nd𝑧) ∈ 𝑆)
2019adantl 271 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑆)
2118, 20sseldd 3024 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑇)
22 peano2uz 9040 . . . . . . . . . . . . . . 15 ((1st𝑧) ∈ (ℤ𝐶) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
2317, 22syl 14 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
24 oveq2 5642 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd𝑧) → ((1st𝑧)𝐹𝑦) = ((1st𝑧)𝐹(2nd𝑧)))
2524eleq1d 2156 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (((1st𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
26 oveq1 5641 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1st𝑧) → (𝑥𝐹𝑦) = ((1st𝑧)𝐹𝑦))
2726eleq1d 2156 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹𝑦) ∈ 𝑆))
2827ralbidv 2380 . . . . . . . . . . . . . . . 16 (𝑥 = (1st𝑧) → (∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆))
294ralrimivva 2455 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
3029ad2antrr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
3128, 30, 17rspcdva 2727 . . . . . . . . . . . . . . 15 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆)
3225, 31, 20rspcdva 2727 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆)
33 opelxpi 4459 . . . . . . . . . . . . . 14 ((((1st𝑧) + 1) ∈ (ℤ𝐶) ∧ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
3423, 32, 33syl2anc 403 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
35 oveq1 5641 . . . . . . . . . . . . . . 15 (𝑥 = (1st𝑧) → (𝑥 + 1) = ((1st𝑧) + 1))
3635, 26opeq12d 3625 . . . . . . . . . . . . . 14 (𝑥 = (1st𝑧) → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩)
3724opeq2d 3624 . . . . . . . . . . . . . 14 (𝑦 = (2nd𝑧) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
38 eqid 2088 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)
3936, 37, 38ovmpt2g 5761 . . . . . . . . . . . . 13 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑇 ∧ ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4017, 21, 34, 39syl3anc 1174 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4115, 40eqtrd 2120 . . . . . . . . . . 11 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4241, 34eqeltrd 2164 . . . . . . . . . 10 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
4342ralrimiva 2446 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
44 uzid 9002 . . . . . . . . . . . 12 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
451, 44syl 14 . . . . . . . . . . 11 (𝜑𝐶 ∈ (ℤ𝐶))
46 opelxpi 4459 . . . . . . . . . . 11 ((𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
4745, 2, 46syl2anc 403 . . . . . . . . . 10 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
4847adantr 270 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
49 frecuzrdgsuctlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
501, 49frec2uzf1od 9778 . . . . . . . . . 10 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
51 f1ocnvdm 5542 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
5250, 51sylan 277 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
53 frecsuc 6154 . . . . . . . . 9 ((∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆) ∧ ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ∧ (𝐺𝐵) ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
5443, 48, 52, 53syl3anc 1174 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
555fveq1i 5290 . . . . . . . 8 (𝑅‘suc (𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵))
565fveq1i 5290 . . . . . . . . 9 (𝑅‘(𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))
5756fveq2i 5292 . . . . . . . 8 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵)))
5854, 55, 573eqtr4g 2145 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
591, 2, 3, 4, 5frecuzrdgrclt 9787 . . . . . . . . . . . 12 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
6059adantr 270 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑅:ω⟶((ℤ𝐶) × 𝑆))
6160, 52ffvelrnd 5419 . . . . . . . . . 10 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
62 1st2nd2 5927 . . . . . . . . . 10 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (𝑅‘(𝐺𝐵)) = ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
6361, 62syl 14 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
641adantr 270 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
652adantr 270 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐴𝑆)
663adantr 270 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑆𝑇)
674adantlr 461 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
6864, 65, 66, 67, 5, 52, 49frecuzrdgg 9788 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝐵))) = (𝐺‘(𝐺𝐵)))
69 f1ocnvfv2 5539 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
7050, 69sylan 277 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
7168, 70eqtrd 2120 . . . . . . . . . 10 ((𝜑𝐵 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝐵))) = 𝐵)
7271opeq1d 3623 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩ = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7363, 72eqtrd 2120 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7473fveq2d 5293 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
7558, 74eqtrd 2120 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
76 df-ov 5637 . . . . . 6 (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7775, 76syl6eqr 2138 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
78 simpr 108 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐵 ∈ (ℤ𝐶))
79 xp2nd 5919 . . . . . . . 8 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
8061, 79syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
8166, 80sseldd 3024 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑇)
82 peano2uz 9040 . . . . . . . 8 (𝐵 ∈ (ℤ𝐶) → (𝐵 + 1) ∈ (ℤ𝐶))
8382adantl 271 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵 + 1) ∈ (ℤ𝐶))
8467, 78, 80caovcld 5780 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆)
85 opelxp 4457 . . . . . . 7 (⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ ((𝐵 + 1) ∈ (ℤ𝐶) ∧ (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆))
8683, 84, 85sylanbrc 408 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆))
87 oveq1 5641 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 + 1) = (𝐵 + 1))
88 oveq1 5641 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥𝐹𝑦) = (𝐵𝐹𝑦))
8987, 88opeq12d 3625 . . . . . . 7 (𝑥 = 𝐵 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝐵 + 1), (𝐵𝐹𝑦)⟩)
90 oveq2 5642 . . . . . . . 8 (𝑦 = (2nd ‘(𝑅‘(𝐺𝐵))) → (𝐵𝐹𝑦) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
9190opeq2d 3624 . . . . . . 7 (𝑦 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨(𝐵 + 1), (𝐵𝐹𝑦)⟩ = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9289, 91, 38ovmpt2g 5761 . . . . . 6 ((𝐵 ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑇 ∧ ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆)) → (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9378, 81, 86, 92syl3anc 1174 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9477, 93eqtrd 2120 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
95 ffun 5150 . . . . . . 7 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → Fun 𝑅)
9660, 95syl 14 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → Fun 𝑅)
97 peano2 4400 . . . . . . . 8 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
9852, 97syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ ω)
99 fdm 5152 . . . . . . . 8 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → dom 𝑅 = ω)
10060, 99syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → dom 𝑅 = ω)
10198, 100eleqtrrd 2167 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ dom 𝑅)
102 fvelrn 5414 . . . . . 6 ((Fun 𝑅 ∧ suc (𝐺𝐵) ∈ dom 𝑅) → (𝑅‘suc (𝐺𝐵)) ∈ ran 𝑅)
10396, 101, 102syl2anc 403 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) ∈ ran 𝑅)
1046adantr 270 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑃 = ran 𝑅)
105103, 104eleqtrrd 2167 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) ∈ 𝑃)
10694, 105eqeltrrd 2165 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ 𝑃)
107 funopfv 5328 . . 3 (Fun 𝑃 → (⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ 𝑃 → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))))
10810, 106, 107sylc 61 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
10952, 100eleqtrrd 2167 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ dom 𝑅)
110 fvelrn 5414 . . . . . . 7 ((Fun 𝑅 ∧ (𝐺𝐵) ∈ dom 𝑅) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
11196, 109, 110syl2anc 403 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
112111, 104eleqtrrd 2167 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ 𝑃)
11373, 112eqeltrrd 2165 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑃)
114 funopfv 5328 . . . 4 (Fun 𝑃 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑃 → (𝑃𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
11510, 113, 114sylc 61 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
116115oveq2d 5650 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵𝐹(𝑃𝐵)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
117108, 116eqtr4d 2123 1 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wral 2359  wss 2997  cop 3444  cmpt 3891  suc csuc 4183  ωcom 4395   × cxp 4426  ccnv 4427  dom cdm 4428  ran crn 4429  Fun wfun 4996  wf 4998  1-1-ontowf1o 5001  cfv 5002  (class class class)co 5634  cmpt2 5636  1st c1st 5891  2nd c2nd 5892  freccfrec 6137  1c1 7330   + caddc 7332  cz 8720  cuz 8988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989
This theorem is referenced by:  frecuzrdgsuct  9796
  Copyright terms: Public domain W3C validator