ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuctlem GIF version

Theorem frecuzrdgsuctlem 10494
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10470 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 29-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgsuctlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgsuctlem.ran (𝜑𝑃 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgsuctlem ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑃(𝑥,𝑦)

Proof of Theorem frecuzrdgsuctlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 frecuzrdgsuctlem.ran . . . . . 6 (𝜑𝑃 = ran 𝑅)
71, 2, 3, 4, 5, 6frecuzrdgtclt 10492 . . . . 5 (𝜑𝑃:(ℤ𝐶)⟶𝑆)
87adantr 276 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑃:(ℤ𝐶)⟶𝑆)
9 ffun 5406 . . . 4 (𝑃:(ℤ𝐶)⟶𝑆 → Fun 𝑃)
108, 9syl 14 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → Fun 𝑃)
11 1st2nd2 6228 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1211adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1312fveq2d 5558 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩))
14 df-ov 5921 . . . . . . . . . . . . 13 ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩)
1513, 14eqtr4di 2244 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)))
16 xp1st 6218 . . . . . . . . . . . . . 14 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (1st𝑧) ∈ (ℤ𝐶))
1716adantl 277 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (1st𝑧) ∈ (ℤ𝐶))
183ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑆𝑇)
19 xp2nd 6219 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (2nd𝑧) ∈ 𝑆)
2019adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑆)
2118, 20sseldd 3180 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑇)
22 peano2uz 9648 . . . . . . . . . . . . . . 15 ((1st𝑧) ∈ (ℤ𝐶) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
2317, 22syl 14 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
24 oveq2 5926 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd𝑧) → ((1st𝑧)𝐹𝑦) = ((1st𝑧)𝐹(2nd𝑧)))
2524eleq1d 2262 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (((1st𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
26 oveq1 5925 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1st𝑧) → (𝑥𝐹𝑦) = ((1st𝑧)𝐹𝑦))
2726eleq1d 2262 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹𝑦) ∈ 𝑆))
2827ralbidv 2494 . . . . . . . . . . . . . . . 16 (𝑥 = (1st𝑧) → (∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆))
294ralrimivva 2576 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
3029ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
3128, 30, 17rspcdva 2869 . . . . . . . . . . . . . . 15 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆)
3225, 31, 20rspcdva 2869 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆)
33 opelxpi 4691 . . . . . . . . . . . . . 14 ((((1st𝑧) + 1) ∈ (ℤ𝐶) ∧ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
3423, 32, 33syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
35 oveq1 5925 . . . . . . . . . . . . . . 15 (𝑥 = (1st𝑧) → (𝑥 + 1) = ((1st𝑧) + 1))
3635, 26opeq12d 3812 . . . . . . . . . . . . . 14 (𝑥 = (1st𝑧) → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩)
3724opeq2d 3811 . . . . . . . . . . . . . 14 (𝑦 = (2nd𝑧) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
38 eqid 2193 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)
3936, 37, 38ovmpog 6053 . . . . . . . . . . . . 13 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑇 ∧ ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4017, 21, 34, 39syl3anc 1249 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4115, 40eqtrd 2226 . . . . . . . . . . 11 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4241, 34eqeltrd 2270 . . . . . . . . . 10 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
4342ralrimiva 2567 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
44 uzid 9606 . . . . . . . . . . . 12 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
451, 44syl 14 . . . . . . . . . . 11 (𝜑𝐶 ∈ (ℤ𝐶))
46 opelxpi 4691 . . . . . . . . . . 11 ((𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
4745, 2, 46syl2anc 411 . . . . . . . . . 10 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
4847adantr 276 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
49 frecuzrdgsuctlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
501, 49frec2uzf1od 10477 . . . . . . . . . 10 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
51 f1ocnvdm 5824 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
5250, 51sylan 283 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
53 frecsuc 6460 . . . . . . . . 9 ((∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆) ∧ ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ∧ (𝐺𝐵) ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
5443, 48, 52, 53syl3anc 1249 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
555fveq1i 5555 . . . . . . . 8 (𝑅‘suc (𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵))
565fveq1i 5555 . . . . . . . . 9 (𝑅‘(𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))
5756fveq2i 5557 . . . . . . . 8 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵)))
5854, 55, 573eqtr4g 2251 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
591, 2, 3, 4, 5frecuzrdgrclt 10486 . . . . . . . . . . . 12 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
6059adantr 276 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑅:ω⟶((ℤ𝐶) × 𝑆))
6160, 52ffvelcdmd 5694 . . . . . . . . . 10 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
62 1st2nd2 6228 . . . . . . . . . 10 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (𝑅‘(𝐺𝐵)) = ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
6361, 62syl 14 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
641adantr 276 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
652adantr 276 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐴𝑆)
663adantr 276 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑆𝑇)
674adantlr 477 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
6864, 65, 66, 67, 5, 52, 49frecuzrdgg 10487 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝐵))) = (𝐺‘(𝐺𝐵)))
69 f1ocnvfv2 5821 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
7050, 69sylan 283 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
7168, 70eqtrd 2226 . . . . . . . . . 10 ((𝜑𝐵 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝐵))) = 𝐵)
7271opeq1d 3810 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩ = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7363, 72eqtrd 2226 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7473fveq2d 5558 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
7558, 74eqtrd 2226 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
76 df-ov 5921 . . . . . 6 (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7775, 76eqtr4di 2244 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
78 simpr 110 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐵 ∈ (ℤ𝐶))
79 xp2nd 6219 . . . . . . . 8 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
8061, 79syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
8166, 80sseldd 3180 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑇)
82 peano2uz 9648 . . . . . . . 8 (𝐵 ∈ (ℤ𝐶) → (𝐵 + 1) ∈ (ℤ𝐶))
8382adantl 277 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵 + 1) ∈ (ℤ𝐶))
8467, 78, 80caovcld 6072 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆)
85 opelxp 4689 . . . . . . 7 (⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ ((𝐵 + 1) ∈ (ℤ𝐶) ∧ (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆))
8683, 84, 85sylanbrc 417 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆))
87 oveq1 5925 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 + 1) = (𝐵 + 1))
88 oveq1 5925 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥𝐹𝑦) = (𝐵𝐹𝑦))
8987, 88opeq12d 3812 . . . . . . 7 (𝑥 = 𝐵 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝐵 + 1), (𝐵𝐹𝑦)⟩)
90 oveq2 5926 . . . . . . . 8 (𝑦 = (2nd ‘(𝑅‘(𝐺𝐵))) → (𝐵𝐹𝑦) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
9190opeq2d 3811 . . . . . . 7 (𝑦 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨(𝐵 + 1), (𝐵𝐹𝑦)⟩ = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9289, 91, 38ovmpog 6053 . . . . . 6 ((𝐵 ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑇 ∧ ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆)) → (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9378, 81, 86, 92syl3anc 1249 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9477, 93eqtrd 2226 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
95 ffun 5406 . . . . . . 7 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → Fun 𝑅)
9660, 95syl 14 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → Fun 𝑅)
97 peano2 4627 . . . . . . . 8 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
9852, 97syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ ω)
99 fdm 5409 . . . . . . . 8 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → dom 𝑅 = ω)
10060, 99syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → dom 𝑅 = ω)
10198, 100eleqtrrd 2273 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ dom 𝑅)
102 fvelrn 5689 . . . . . 6 ((Fun 𝑅 ∧ suc (𝐺𝐵) ∈ dom 𝑅) → (𝑅‘suc (𝐺𝐵)) ∈ ran 𝑅)
10396, 101, 102syl2anc 411 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) ∈ ran 𝑅)
1046adantr 276 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑃 = ran 𝑅)
105103, 104eleqtrrd 2273 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) ∈ 𝑃)
10694, 105eqeltrrd 2271 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ 𝑃)
107 funopfv 5596 . . 3 (Fun 𝑃 → (⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ 𝑃 → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))))
10810, 106, 107sylc 62 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
10952, 100eleqtrrd 2273 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ dom 𝑅)
110 fvelrn 5689 . . . . . . 7 ((Fun 𝑅 ∧ (𝐺𝐵) ∈ dom 𝑅) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
11196, 109, 110syl2anc 411 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
112111, 104eleqtrrd 2273 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ 𝑃)
11373, 112eqeltrrd 2271 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑃)
114 funopfv 5596 . . . 4 (Fun 𝑃 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑃 → (𝑃𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
11510, 113, 114sylc 62 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
116115oveq2d 5934 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵𝐹(𝑃𝐵)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
117108, 116eqtr4d 2229 1 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wss 3153  cop 3621  cmpt 4090  suc csuc 4396  ωcom 4622   × cxp 4657  ccnv 4658  dom cdm 4659  ran crn 4660  Fun wfun 5248  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cmpo 5920  1st c1st 6191  2nd c2nd 6192  freccfrec 6443  1c1 7873   + caddc 7875  cz 9317  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  frecuzrdgsuct  10495
  Copyright terms: Public domain W3C validator