ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuctlem GIF version

Theorem frecuzrdgsuctlem 10379
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10355 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 29-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgsuctlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgsuctlem.ran (𝜑𝑃 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgsuctlem ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑃(𝑥,𝑦)

Proof of Theorem frecuzrdgsuctlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 frecuzrdgsuctlem.ran . . . . . 6 (𝜑𝑃 = ran 𝑅)
71, 2, 3, 4, 5, 6frecuzrdgtclt 10377 . . . . 5 (𝜑𝑃:(ℤ𝐶)⟶𝑆)
87adantr 274 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑃:(ℤ𝐶)⟶𝑆)
9 ffun 5350 . . . 4 (𝑃:(ℤ𝐶)⟶𝑆 → Fun 𝑃)
108, 9syl 14 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → Fun 𝑃)
11 1st2nd2 6154 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1211adantl 275 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1312fveq2d 5500 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩))
14 df-ov 5856 . . . . . . . . . . . . 13 ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩)
1513, 14eqtr4di 2221 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)))
16 xp1st 6144 . . . . . . . . . . . . . 14 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (1st𝑧) ∈ (ℤ𝐶))
1716adantl 275 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (1st𝑧) ∈ (ℤ𝐶))
183ad2antrr 485 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑆𝑇)
19 xp2nd 6145 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (2nd𝑧) ∈ 𝑆)
2019adantl 275 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑆)
2118, 20sseldd 3148 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑇)
22 peano2uz 9542 . . . . . . . . . . . . . . 15 ((1st𝑧) ∈ (ℤ𝐶) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
2317, 22syl 14 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
24 oveq2 5861 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd𝑧) → ((1st𝑧)𝐹𝑦) = ((1st𝑧)𝐹(2nd𝑧)))
2524eleq1d 2239 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (((1st𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
26 oveq1 5860 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1st𝑧) → (𝑥𝐹𝑦) = ((1st𝑧)𝐹𝑦))
2726eleq1d 2239 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹𝑦) ∈ 𝑆))
2827ralbidv 2470 . . . . . . . . . . . . . . . 16 (𝑥 = (1st𝑧) → (∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆))
294ralrimivva 2552 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
3029ad2antrr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
3128, 30, 17rspcdva 2839 . . . . . . . . . . . . . . 15 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆)
3225, 31, 20rspcdva 2839 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆)
33 opelxpi 4643 . . . . . . . . . . . . . 14 ((((1st𝑧) + 1) ∈ (ℤ𝐶) ∧ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
3423, 32, 33syl2anc 409 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
35 oveq1 5860 . . . . . . . . . . . . . . 15 (𝑥 = (1st𝑧) → (𝑥 + 1) = ((1st𝑧) + 1))
3635, 26opeq12d 3773 . . . . . . . . . . . . . 14 (𝑥 = (1st𝑧) → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩)
3724opeq2d 3772 . . . . . . . . . . . . . 14 (𝑦 = (2nd𝑧) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
38 eqid 2170 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)
3936, 37, 38ovmpog 5987 . . . . . . . . . . . . 13 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑇 ∧ ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4017, 21, 34, 39syl3anc 1233 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4115, 40eqtrd 2203 . . . . . . . . . . 11 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
4241, 34eqeltrd 2247 . . . . . . . . . 10 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
4342ralrimiva 2543 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
44 uzid 9501 . . . . . . . . . . . 12 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
451, 44syl 14 . . . . . . . . . . 11 (𝜑𝐶 ∈ (ℤ𝐶))
46 opelxpi 4643 . . . . . . . . . . 11 ((𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
4745, 2, 46syl2anc 409 . . . . . . . . . 10 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
4847adantr 274 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
49 frecuzrdgsuctlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
501, 49frec2uzf1od 10362 . . . . . . . . . 10 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
51 f1ocnvdm 5760 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
5250, 51sylan 281 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
53 frecsuc 6386 . . . . . . . . 9 ((∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆) ∧ ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ∧ (𝐺𝐵) ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
5443, 48, 52, 53syl3anc 1233 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
555fveq1i 5497 . . . . . . . 8 (𝑅‘suc (𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵))
565fveq1i 5497 . . . . . . . . 9 (𝑅‘(𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))
5756fveq2i 5499 . . . . . . . 8 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵)))
5854, 55, 573eqtr4g 2228 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
591, 2, 3, 4, 5frecuzrdgrclt 10371 . . . . . . . . . . . 12 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
6059adantr 274 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑅:ω⟶((ℤ𝐶) × 𝑆))
6160, 52ffvelrnd 5632 . . . . . . . . . 10 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
62 1st2nd2 6154 . . . . . . . . . 10 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (𝑅‘(𝐺𝐵)) = ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
6361, 62syl 14 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
641adantr 274 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
652adantr 274 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐴𝑆)
663adantr 274 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑆𝑇)
674adantlr 474 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
6864, 65, 66, 67, 5, 52, 49frecuzrdgg 10372 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝐵))) = (𝐺‘(𝐺𝐵)))
69 f1ocnvfv2 5757 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
7050, 69sylan 281 . . . . . . . . . . 11 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
7168, 70eqtrd 2203 . . . . . . . . . 10 ((𝜑𝐵 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝐵))) = 𝐵)
7271opeq1d 3771 . . . . . . . . 9 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(1st ‘(𝑅‘(𝐺𝐵))), (2nd ‘(𝑅‘(𝐺𝐵)))⟩ = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7363, 72eqtrd 2203 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7473fveq2d 5500 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
7558, 74eqtrd 2203 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
76 df-ov 5856 . . . . . 6 (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
7775, 76eqtr4di 2221 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
78 simpr 109 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐵 ∈ (ℤ𝐶))
79 xp2nd 6145 . . . . . . . 8 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
8061, 79syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
8166, 80sseldd 3148 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑇)
82 peano2uz 9542 . . . . . . . 8 (𝐵 ∈ (ℤ𝐶) → (𝐵 + 1) ∈ (ℤ𝐶))
8382adantl 275 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵 + 1) ∈ (ℤ𝐶))
8467, 78, 80caovcld 6006 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆)
85 opelxp 4641 . . . . . . 7 (⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ ((𝐵 + 1) ∈ (ℤ𝐶) ∧ (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆))
8683, 84, 85sylanbrc 415 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆))
87 oveq1 5860 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 + 1) = (𝐵 + 1))
88 oveq1 5860 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥𝐹𝑦) = (𝐵𝐹𝑦))
8987, 88opeq12d 3773 . . . . . . 7 (𝑥 = 𝐵 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝐵 + 1), (𝐵𝐹𝑦)⟩)
90 oveq2 5861 . . . . . . . 8 (𝑦 = (2nd ‘(𝑅‘(𝐺𝐵))) → (𝐵𝐹𝑦) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
9190opeq2d 3772 . . . . . . 7 (𝑦 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨(𝐵 + 1), (𝐵𝐹𝑦)⟩ = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9289, 91, 38ovmpog 5987 . . . . . 6 ((𝐵 ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑇 ∧ ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆)) → (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9378, 81, 86, 92syl3anc 1233 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
9477, 93eqtrd 2203 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
95 ffun 5350 . . . . . . 7 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → Fun 𝑅)
9660, 95syl 14 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → Fun 𝑅)
97 peano2 4579 . . . . . . . 8 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
9852, 97syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ ω)
99 fdm 5353 . . . . . . . 8 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → dom 𝑅 = ω)
10060, 99syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → dom 𝑅 = ω)
10198, 100eleqtrrd 2250 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ dom 𝑅)
102 fvelrn 5627 . . . . . 6 ((Fun 𝑅 ∧ suc (𝐺𝐵) ∈ dom 𝑅) → (𝑅‘suc (𝐺𝐵)) ∈ ran 𝑅)
10396, 101, 102syl2anc 409 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) ∈ ran 𝑅)
1046adantr 274 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑃 = ran 𝑅)
105103, 104eleqtrrd 2250 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) ∈ 𝑃)
10694, 105eqeltrrd 2248 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ 𝑃)
107 funopfv 5536 . . 3 (Fun 𝑃 → (⟨(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ 𝑃 → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵))))))
10810, 106, 107sylc 62 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
10952, 100eleqtrrd 2250 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ dom 𝑅)
110 fvelrn 5627 . . . . . . 7 ((Fun 𝑅 ∧ (𝐺𝐵) ∈ dom 𝑅) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
11196, 109, 110syl2anc 409 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
112111, 104eleqtrrd 2250 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ 𝑃)
11373, 112eqeltrrd 2248 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑃)
114 funopfv 5536 . . . 4 (Fun 𝑃 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑃 → (𝑃𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
11510, 113, 114sylc 62 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
116115oveq2d 5869 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵𝐹(𝑃𝐵)) = (𝐵𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
117108, 116eqtr4d 2206 1 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wss 3121  cop 3586  cmpt 4050  suc csuc 4350  ωcom 4574   × cxp 4609  ccnv 4610  dom cdm 4611  ran crn 4612  Fun wfun 5192  wf 5194  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  cmpo 5855  1st c1st 6117  2nd c2nd 6118  freccfrec 6369  1c1 7775   + caddc 7777  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  frecuzrdgsuct  10380
  Copyright terms: Public domain W3C validator