Step | Hyp | Ref
| Expression |
1 | | frecuzrdgrclt.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) |
2 | | frecuzrdgrclt.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
3 | | frecuzrdgrclt.t |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
4 | | frecuzrdgrclt.f |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
5 | | frecuzrdgrclt.r |
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
6 | | frecuzrdgsuctlem.ran |
. . . . . 6
⊢ (𝜑 → 𝑃 = ran 𝑅) |
7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtclt 10298 |
. . . . 5
⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
8 | 7 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
9 | | ffun 5315 |
. . . 4
⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑃) |
10 | 8, 9 | syl 14 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → Fun 𝑃) |
11 | | 1st2nd2 6113 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
12 | 11 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
13 | 12 | fveq2d 5465 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉)) |
14 | | df-ov 5817 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) |
15 | 13, 14 | eqtr4di 2205 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) = ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧))) |
16 | | xp1st 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → (1st ‘𝑧) ∈
(ℤ≥‘𝐶)) |
17 | 16 | adantl 275 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (1st ‘𝑧) ∈
(ℤ≥‘𝐶)) |
18 | 3 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 𝑆 ⊆ 𝑇) |
19 | | xp2nd 6104 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘𝑧) ∈ 𝑆) |
20 | 19 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (2nd ‘𝑧) ∈ 𝑆) |
21 | 18, 20 | sseldd 3125 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (2nd ‘𝑧) ∈ 𝑇) |
22 | | peano2uz 9473 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑧) ∈ (ℤ≥‘𝐶) → ((1st
‘𝑧) + 1) ∈
(ℤ≥‘𝐶)) |
23 | 17, 22 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧) + 1) ∈
(ℤ≥‘𝐶)) |
24 | | oveq2 5822 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (2nd ‘𝑧) → ((1st
‘𝑧)𝐹𝑦) = ((1st ‘𝑧)𝐹(2nd ‘𝑧))) |
25 | 24 | eleq1d 2223 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (2nd ‘𝑧) → (((1st
‘𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) |
26 | | oveq1 5821 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (1st ‘𝑧) → (𝑥𝐹𝑦) = ((1st ‘𝑧)𝐹𝑦)) |
27 | 26 | eleq1d 2223 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (1st ‘𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆)) |
28 | 27 | ralbidv 2454 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (1st ‘𝑧) → (∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑆 ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆)) |
29 | 4 | ralrimivva 2536 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆) |
30 | 29 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆) |
31 | 28, 30, 17 | rspcdva 2818 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ∀𝑦 ∈ 𝑆 ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆) |
32 | 25, 31, 20 | rspcdva 2818 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆) |
33 | | opelxpi 4611 |
. . . . . . . . . . . . . 14
⊢
((((1st ‘𝑧) + 1) ∈
(ℤ≥‘𝐶) ∧ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆) → 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
34 | 23, 32, 33 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
35 | | oveq1 5821 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (1st ‘𝑧) → (𝑥 + 1) = ((1st ‘𝑧) + 1)) |
36 | 35, 26 | opeq12d 3745 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (1st ‘𝑧) → 〈(𝑥 + 1), (𝑥𝐹𝑦)〉 = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹𝑦)〉) |
37 | 24 | opeq2d 3744 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (2nd ‘𝑧) → 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹𝑦)〉 = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹(2nd ‘𝑧))〉) |
38 | | eqid 2154 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) = (𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) |
39 | 36, 37, 38 | ovmpog 5945 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑧) ∈ (ℤ≥‘𝐶) ∧ (2nd
‘𝑧) ∈ 𝑇 ∧ 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) |
40 | 17, 21, 34, 39 | syl3anc 1217 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) |
41 | 15, 40 | eqtrd 2187 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹(2nd ‘𝑧))〉) |
42 | 41, 34 | eqeltrd 2231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆)) |
43 | 42 | ralrimiva 2527 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ∀𝑧 ∈
((ℤ≥‘𝐶) × 𝑆)((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆)) |
44 | | uzid 9432 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
(ℤ≥‘𝐶)) |
45 | 1, 44 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐶)) |
46 | | opelxpi 4611 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈
(ℤ≥‘𝐶) ∧ 𝐴 ∈ 𝑆) → 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
47 | 45, 2, 46 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
48 | 47 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
49 | | frecuzrdgsuctlem.g |
. . . . . . . . . . 11
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
50 | 1, 49 | frec2uzf1od 10283 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
51 | | f1ocnvdm 5722 |
. . . . . . . . . 10
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) |
52 | 50, 51 | sylan 281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) |
53 | | frecsuc 6344 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
((ℤ≥‘𝐶) × 𝑆)((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆) ∧ 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆) ∧ (◡𝐺‘𝐵) ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)))) |
54 | 43, 48, 52, 53 | syl3anc 1217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)))) |
55 | 5 | fveq1i 5462 |
. . . . . . . 8
⊢ (𝑅‘suc (◡𝐺‘𝐵)) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) |
56 | 5 | fveq1i 5462 |
. . . . . . . . 9
⊢ (𝑅‘(◡𝐺‘𝐵)) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)) |
57 | 56 | fveq2i 5464 |
. . . . . . . 8
⊢ ((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵))) |
58 | 54, 55, 57 | 3eqtr4g 2212 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵)))) |
59 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10292 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
60 | 59 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
61 | 60, 52 | ffvelrnd 5596 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
62 | | 1st2nd2 6113 |
. . . . . . . . . 10
⊢ ((𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆) → (𝑅‘(◡𝐺‘𝐵)) = 〈(1st ‘(𝑅‘(◡𝐺‘𝐵))), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
63 | 61, 62 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) = 〈(1st ‘(𝑅‘(◡𝐺‘𝐵))), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
64 | 1 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ ℤ) |
65 | 2 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐴 ∈ 𝑆) |
66 | 3 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝑆 ⊆ 𝑇) |
67 | 4 | adantlr 469 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
68 | 64, 65, 66, 67, 5, 52, 49 | frecuzrdgg 10293 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (1st
‘(𝑅‘(◡𝐺‘𝐵))) = (𝐺‘(◡𝐺‘𝐵))) |
69 | | f1ocnvfv2 5719 |
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
70 | 50, 69 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
71 | 68, 70 | eqtrd 2187 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (1st
‘(𝑅‘(◡𝐺‘𝐵))) = 𝐵) |
72 | 71 | opeq1d 3743 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈(1st
‘(𝑅‘(◡𝐺‘𝐵))), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
73 | 63, 72 | eqtrd 2187 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
74 | 73 | fveq2d 5465 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉)) |
75 | 58, 74 | eqtrd 2187 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉)) |
76 | | df-ov 5817 |
. . . . . 6
⊢ (𝐵(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
77 | 75, 76 | eqtr4di 2205 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) = (𝐵(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
78 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐵 ∈ (ℤ≥‘𝐶)) |
79 | | xp2nd 6104 |
. . . . . . . 8
⊢ ((𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑆) |
80 | 61, 79 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑆) |
81 | 66, 80 | sseldd 3125 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑇) |
82 | | peano2uz 9473 |
. . . . . . . 8
⊢ (𝐵 ∈
(ℤ≥‘𝐶) → (𝐵 + 1) ∈
(ℤ≥‘𝐶)) |
83 | 82 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐵 + 1) ∈
(ℤ≥‘𝐶)) |
84 | 67, 78, 80 | caovcld 5964 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ 𝑆) |
85 | | opelxp 4609 |
. . . . . . 7
⊢
(〈(𝐵 + 1),
(𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ ((𝐵 + 1) ∈
(ℤ≥‘𝐶) ∧ (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ 𝑆)) |
86 | 83, 84, 85 | sylanbrc 414 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
87 | | oveq1 5821 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝑥 + 1) = (𝐵 + 1)) |
88 | | oveq1 5821 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝑥𝐹𝑦) = (𝐵𝐹𝑦)) |
89 | 87, 88 | opeq12d 3745 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → 〈(𝑥 + 1), (𝑥𝐹𝑦)〉 = 〈(𝐵 + 1), (𝐵𝐹𝑦)〉) |
90 | | oveq2 5822 |
. . . . . . . 8
⊢ (𝑦 = (2nd ‘(𝑅‘(◡𝐺‘𝐵))) → (𝐵𝐹𝑦) = (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
91 | 90 | opeq2d 3744 |
. . . . . . 7
⊢ (𝑦 = (2nd ‘(𝑅‘(◡𝐺‘𝐵))) → 〈(𝐵 + 1), (𝐵𝐹𝑦)〉 = 〈(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
92 | 89, 91, 38 | ovmpog 5945 |
. . . . . 6
⊢ ((𝐵 ∈
(ℤ≥‘𝐶) ∧ (2nd ‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑇 ∧ 〈(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → (𝐵(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = 〈(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
93 | 78, 81, 86, 92 | syl3anc 1217 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐵(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = 〈(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
94 | 77, 93 | eqtrd 2187 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) = 〈(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
95 | | ffun 5315 |
. . . . . . 7
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → Fun 𝑅) |
96 | 60, 95 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → Fun 𝑅) |
97 | | peano2 4548 |
. . . . . . . 8
⊢ ((◡𝐺‘𝐵) ∈ ω → suc (◡𝐺‘𝐵) ∈ ω) |
98 | 52, 97 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → suc (◡𝐺‘𝐵) ∈ ω) |
99 | | fdm 5318 |
. . . . . . . 8
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → dom 𝑅 = ω) |
100 | 60, 99 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → dom 𝑅 = ω) |
101 | 98, 100 | eleqtrrd 2234 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → suc (◡𝐺‘𝐵) ∈ dom 𝑅) |
102 | | fvelrn 5591 |
. . . . . 6
⊢ ((Fun
𝑅 ∧ suc (◡𝐺‘𝐵) ∈ dom 𝑅) → (𝑅‘suc (◡𝐺‘𝐵)) ∈ ran 𝑅) |
103 | 96, 101, 102 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) ∈ ran 𝑅) |
104 | 6 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝑃 = ran 𝑅) |
105 | 103, 104 | eleqtrrd 2234 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) ∈ 𝑃) |
106 | 94, 105 | eqeltrrd 2232 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈ 𝑃) |
107 | | funopfv 5501 |
. . 3
⊢ (Fun
𝑃 → (〈(𝐵 + 1), (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈ 𝑃 → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))))) |
108 | 10, 106, 107 | sylc 62 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
109 | 52, 100 | eleqtrrd 2234 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ dom 𝑅) |
110 | | fvelrn 5591 |
. . . . . . 7
⊢ ((Fun
𝑅 ∧ (◡𝐺‘𝐵) ∈ dom 𝑅) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
111 | 96, 109, 110 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
112 | 111, 104 | eleqtrrd 2234 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) ∈ 𝑃) |
113 | 73, 112 | eqeltrrd 2232 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑃) |
114 | | funopfv 5501 |
. . . 4
⊢ (Fun
𝑃 → (〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑃 → (𝑃‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
115 | 10, 113, 114 | sylc 62 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵)))) |
116 | 115 | oveq2d 5830 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐵𝐹(𝑃‘𝐵)) = (𝐵𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
117 | 108, 116 | eqtr4d 2190 |
1
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) |