ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0 GIF version

Theorem frecuzrdg0 10348
Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10334 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 27-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtcl.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdg0 (𝜑 → (𝑇𝐶) = 𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdg0
StepHypRef Expression
1 frec2uz.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uz.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 frecuzrdgrrn.a . . . 4 (𝜑𝐴𝑆)
4 frecuzrdgrrn.f . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrrn.2 . . . 4 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 frecuzrdgtcl.3 . . . 4 (𝜑𝑇 = ran 𝑅)
71, 2, 3, 4, 5, 6frecuzrdgtcl 10347 . . 3 (𝜑𝑇:(ℤ𝐶)⟶𝑆)
8 ffun 5340 . . 3 (𝑇:(ℤ𝐶)⟶𝑆 → Fun 𝑇)
97, 8syl 14 . 2 (𝜑 → Fun 𝑇)
105fveq1i 5487 . . . . 5 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅)
11 opexg 4206 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ V)
121, 3, 11syl2anc 409 . . . . . 6 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ V)
13 frec0g 6365 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
1412, 13syl 14 . . . . 5 (𝜑 → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
1510, 14syl5eq 2211 . . . 4 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
161, 2, 3, 4, 5frecuzrdgrcl 10345 . . . . . 6 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
17 ffn 5337 . . . . . 6 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
1816, 17syl 14 . . . . 5 (𝜑𝑅 Fn ω)
19 peano1 4571 . . . . 5 ∅ ∈ ω
20 fnfvelrn 5617 . . . . 5 ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅)
2118, 19, 20sylancl 410 . . . 4 (𝜑 → (𝑅‘∅) ∈ ran 𝑅)
2215, 21eqeltrrd 2244 . . 3 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ran 𝑅)
2322, 6eleqtrrd 2246 . 2 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ 𝑇)
24 funopfv 5526 . 2 (Fun 𝑇 → (⟨𝐶, 𝐴⟩ ∈ 𝑇 → (𝑇𝐶) = 𝐴))
259, 23, 24sylc 62 1 (𝜑 → (𝑇𝐶) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  c0 3409  cop 3579  cmpt 4043  ωcom 4567   × cxp 4602  ran crn 4605  Fun wfun 5182   Fn wfn 5183  wf 5184  cfv 5188  (class class class)co 5842  cmpo 5844  freccfrec 6358  1c1 7754   + caddc 7756  cz 9191  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator