ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0 GIF version

Theorem frecuzrdg0 10027
Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10013 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 27-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtcl.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdg0 (𝜑 → (𝑇𝐶) = 𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdg0
StepHypRef Expression
1 frec2uz.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uz.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 frecuzrdgrrn.a . . . 4 (𝜑𝐴𝑆)
4 frecuzrdgrrn.f . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrrn.2 . . . 4 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 frecuzrdgtcl.3 . . . 4 (𝜑𝑇 = ran 𝑅)
71, 2, 3, 4, 5, 6frecuzrdgtcl 10026 . . 3 (𝜑𝑇:(ℤ𝐶)⟶𝑆)
8 ffun 5211 . . 3 (𝑇:(ℤ𝐶)⟶𝑆 → Fun 𝑇)
97, 8syl 14 . 2 (𝜑 → Fun 𝑇)
105fveq1i 5354 . . . . 5 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅)
11 opexg 4088 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ V)
121, 3, 11syl2anc 406 . . . . . 6 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ V)
13 frec0g 6224 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
1412, 13syl 14 . . . . 5 (𝜑 → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
1510, 14syl5eq 2144 . . . 4 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
161, 2, 3, 4, 5frecuzrdgrcl 10024 . . . . . 6 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
17 ffn 5208 . . . . . 6 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
1816, 17syl 14 . . . . 5 (𝜑𝑅 Fn ω)
19 peano1 4446 . . . . 5 ∅ ∈ ω
20 fnfvelrn 5484 . . . . 5 ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅)
2118, 19, 20sylancl 407 . . . 4 (𝜑 → (𝑅‘∅) ∈ ran 𝑅)
2215, 21eqeltrrd 2177 . . 3 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ran 𝑅)
2322, 6eleqtrrd 2179 . 2 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ 𝑇)
24 funopfv 5393 . 2 (Fun 𝑇 → (⟨𝐶, 𝐴⟩ ∈ 𝑇 → (𝑇𝐶) = 𝐴))
259, 23, 24sylc 62 1 (𝜑 → (𝑇𝐶) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  Vcvv 2641  c0 3310  cop 3477  cmpt 3929  ωcom 4442   × cxp 4475  ran crn 4478  Fun wfun 5053   Fn wfn 5054  wf 5055  cfv 5059  (class class class)co 5706  cmpo 5708  freccfrec 6217  1c1 7501   + caddc 7503  cz 8906  cuz 9176
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator