| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdg0 | GIF version | ||
| Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10629 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 27-May-2020.) |
| Ref | Expression |
|---|---|
| frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| frecuzrdgrrn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| frecuzrdgrrn.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| frecuzrdgrrn.2 | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| frecuzrdgtcl.3 | ⊢ (𝜑 → 𝑇 = ran 𝑅) |
| Ref | Expression |
|---|---|
| frecuzrdg0 | ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 3 | frecuzrdgrrn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | frecuzrdgrrn.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 5 | frecuzrdgrrn.2 | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
| 6 | frecuzrdgtcl.3 | . . . 4 ⊢ (𝜑 → 𝑇 = ran 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtcl 10642 | . . 3 ⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) |
| 8 | ffun 5476 | . . 3 ⊢ (𝑇:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑇) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → Fun 𝑇) |
| 10 | 5 | fveq1i 5630 | . . . . 5 ⊢ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) |
| 11 | opexg 4314 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → 〈𝐶, 𝐴〉 ∈ V) | |
| 12 | 1, 3, 11 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ V) |
| 13 | frec0g 6549 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) |
| 15 | 10, 14 | eqtrid 2274 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = 〈𝐶, 𝐴〉) |
| 16 | 1, 2, 3, 4, 5 | frecuzrdgrcl 10640 | . . . . . 6 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
| 17 | ffn 5473 | . . . . . 6 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) | |
| 18 | 16, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 Fn ω) |
| 19 | peano1 4686 | . . . . 5 ⊢ ∅ ∈ ω | |
| 20 | fnfvelrn 5769 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 21 | 18, 19, 20 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
| 22 | 15, 21 | eqeltrrd 2307 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ ran 𝑅) |
| 23 | 22, 6 | eleqtrrd 2309 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑇) |
| 24 | funopfv 5673 | . 2 ⊢ (Fun 𝑇 → (〈𝐶, 𝐴〉 ∈ 𝑇 → (𝑇‘𝐶) = 𝐴)) | |
| 25 | 9, 23, 24 | sylc 62 | 1 ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 〈cop 3669 ↦ cmpt 4145 ωcom 4682 × cxp 4717 ran crn 4720 Fun wfun 5312 Fn wfn 5313 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 freccfrec 6542 1c1 8008 + caddc 8010 ℤcz 9454 ℤ≥cuz 9730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |