![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frecuzrdg0 | GIF version |
Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10402 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 27-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frecuzrdgrrn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
frecuzrdgrrn.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
frecuzrdgrrn.2 | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) |
frecuzrdgtcl.3 | ⊢ (𝜑 → 𝑇 = ran 𝑅) |
Ref | Expression |
---|---|
frecuzrdg0 | ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
3 | frecuzrdgrrn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | frecuzrdgrrn.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | frecuzrdgrrn.2 | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) | |
6 | frecuzrdgtcl.3 | . . . 4 ⊢ (𝜑 → 𝑇 = ran 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtcl 10415 | . . 3 ⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) |
8 | ffun 5370 | . . 3 ⊢ (𝑇:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑇) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → Fun 𝑇) |
10 | 5 | fveq1i 5518 | . . . . 5 ⊢ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) |
11 | opexg 4230 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → ⟨𝐶, 𝐴⟩ ∈ V) | |
12 | 1, 3, 11 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ⟨𝐶, 𝐴⟩ ∈ V) |
13 | frec0g 6401 | . . . . . 6 ⊢ (⟨𝐶, 𝐴⟩ ∈ V → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩) | |
14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩) |
15 | 10, 14 | eqtrid 2222 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩) |
16 | 1, 2, 3, 4, 5 | frecuzrdgrcl 10413 | . . . . . 6 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
17 | ffn 5367 | . . . . . 6 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) | |
18 | 16, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 Fn ω) |
19 | peano1 4595 | . . . . 5 ⊢ ∅ ∈ ω | |
20 | fnfvelrn 5651 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
21 | 18, 19, 20 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
22 | 15, 21 | eqeltrrd 2255 | . . 3 ⊢ (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ran 𝑅) |
23 | 22, 6 | eleqtrrd 2257 | . 2 ⊢ (𝜑 → ⟨𝐶, 𝐴⟩ ∈ 𝑇) |
24 | funopfv 5558 | . 2 ⊢ (Fun 𝑇 → (⟨𝐶, 𝐴⟩ ∈ 𝑇 → (𝑇‘𝐶) = 𝐴)) | |
25 | 9, 23, 24 | sylc 62 | 1 ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∅c0 3424 ⟨cop 3597 ↦ cmpt 4066 ωcom 4591 × cxp 4626 ran crn 4629 Fun wfun 5212 Fn wfn 5213 ⟶wf 5214 ‘cfv 5218 (class class class)co 5878 ∈ cmpo 5880 freccfrec 6394 1c1 7815 + caddc 7817 ℤcz 9256 ℤ≥cuz 9531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-frec 6395 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |