| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdg0 | GIF version | ||
| Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10557 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 27-May-2020.) |
| Ref | Expression |
|---|---|
| frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| frecuzrdgrrn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| frecuzrdgrrn.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| frecuzrdgrrn.2 | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| frecuzrdgtcl.3 | ⊢ (𝜑 → 𝑇 = ran 𝑅) |
| Ref | Expression |
|---|---|
| frecuzrdg0 | ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 3 | frecuzrdgrrn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | frecuzrdgrrn.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 5 | frecuzrdgrrn.2 | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
| 6 | frecuzrdgtcl.3 | . . . 4 ⊢ (𝜑 → 𝑇 = ran 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtcl 10570 | . . 3 ⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) |
| 8 | ffun 5435 | . . 3 ⊢ (𝑇:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑇) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → Fun 𝑇) |
| 10 | 5 | fveq1i 5587 | . . . . 5 ⊢ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) |
| 11 | opexg 4277 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → 〈𝐶, 𝐴〉 ∈ V) | |
| 12 | 1, 3, 11 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ V) |
| 13 | frec0g 6493 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) |
| 15 | 10, 14 | eqtrid 2251 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = 〈𝐶, 𝐴〉) |
| 16 | 1, 2, 3, 4, 5 | frecuzrdgrcl 10568 | . . . . . 6 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
| 17 | ffn 5432 | . . . . . 6 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) | |
| 18 | 16, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 Fn ω) |
| 19 | peano1 4647 | . . . . 5 ⊢ ∅ ∈ ω | |
| 20 | fnfvelrn 5722 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 21 | 18, 19, 20 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
| 22 | 15, 21 | eqeltrrd 2284 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ ran 𝑅) |
| 23 | 22, 6 | eleqtrrd 2286 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑇) |
| 24 | funopfv 5628 | . 2 ⊢ (Fun 𝑇 → (〈𝐶, 𝐴〉 ∈ 𝑇 → (𝑇‘𝐶) = 𝐴)) | |
| 25 | 9, 23, 24 | sylc 62 | 1 ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∅c0 3462 〈cop 3638 ↦ cmpt 4110 ωcom 4643 × cxp 4678 ran crn 4681 Fun wfun 5271 Fn wfn 5272 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 ∈ cmpo 5956 freccfrec 6486 1c1 7939 + caddc 7941 ℤcz 9385 ℤ≥cuz 9661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-n0 9309 df-z 9386 df-uz 9662 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |