ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdglem GIF version

Theorem frecuzrdglem 10215
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdglem.b (𝜑𝐵 ∈ (ℤ𝐶))
Assertion
Ref Expression
frecuzrdglem (𝜑 → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdglem
StepHypRef Expression
1 frec2uz.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uz.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 frecuzrdgrrn.a . . . 4 (𝜑𝐴𝑆)
4 frecuzrdgrrn.f . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrrn.2 . . . 4 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
61, 2frec2uzf1od 10210 . . . . 5 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
7 frecuzrdglem.b . . . . 5 (𝜑𝐵 ∈ (ℤ𝐶))
8 f1ocnvdm 5690 . . . . 5 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
96, 7, 8syl2anc 409 . . . 4 (𝜑 → (𝐺𝐵) ∈ ω)
101, 2, 3, 4, 5, 9frec2uzrdg 10213 . . 3 (𝜑 → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
11 f1ocnvfv2 5687 . . . . 5 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
126, 7, 11syl2anc 409 . . . 4 (𝜑 → (𝐺‘(𝐺𝐵)) = 𝐵)
1312opeq1d 3719 . . 3 (𝜑 → ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩ = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
1410, 13eqtrd 2173 . 2 (𝜑 → (𝑅‘(𝐺𝐵)) = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
151, 2, 3, 4, 5frecuzrdgrcl 10214 . . . 4 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
16 ffn 5280 . . . 4 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
1715, 16syl 14 . . 3 (𝜑𝑅 Fn ω)
18 fnfvelrn 5560 . . 3 ((𝑅 Fn ω ∧ (𝐺𝐵) ∈ ω) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
1917, 9, 18syl2anc 409 . 2 (𝜑 → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
2014, 19eqeltrrd 2218 1 (𝜑 → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  cop 3535  cmpt 3997  ωcom 4512   × cxp 4545  ccnv 4546  ran crn 4548   Fn wfn 5126  wf 5127  1-1-ontowf1o 5130  cfv 5131  (class class class)co 5782  cmpo 5784  2nd c2nd 6045  freccfrec 6295  1c1 7645   + caddc 7647  cz 9078  cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  frecuzrdgtcl  10216  frecuzrdgsuc  10218
  Copyright terms: Public domain W3C validator