![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frecuzrdglem | GIF version |
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frecuzrdgrrn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
frecuzrdgrrn.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
frecuzrdgrrn.2 | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
frecuzrdglem.b | ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐶)) |
Ref | Expression |
---|---|
frecuzrdglem | ⊢ (𝜑 → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
3 | frecuzrdgrrn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | frecuzrdgrrn.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | frecuzrdgrrn.2 | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
6 | 1, 2 | frec2uzf1od 10477 | . . . . 5 ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
7 | frecuzrdglem.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐶)) | |
8 | f1ocnvdm 5824 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) | |
9 | 6, 7, 8 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (◡𝐺‘𝐵) ∈ ω) |
10 | 1, 2, 3, 4, 5, 9 | frec2uzrdg 10480 | . . 3 ⊢ (𝜑 → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
11 | f1ocnvfv2 5821 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | |
12 | 6, 7, 11 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
13 | 12 | opeq1d 3810 | . . 3 ⊢ (𝜑 → 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
14 | 10, 13 | eqtrd 2226 | . 2 ⊢ (𝜑 → (𝑅‘(◡𝐺‘𝐵)) = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
15 | 1, 2, 3, 4, 5 | frecuzrdgrcl 10481 | . . . 4 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
16 | ffn 5403 | . . . 4 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) | |
17 | 15, 16 | syl 14 | . . 3 ⊢ (𝜑 → 𝑅 Fn ω) |
18 | fnfvelrn 5690 | . . 3 ⊢ ((𝑅 Fn ω ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) | |
19 | 17, 9, 18 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
20 | 14, 19 | eqeltrrd 2271 | 1 ⊢ (𝜑 → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 〈cop 3621 ↦ cmpt 4090 ωcom 4622 × cxp 4657 ◡ccnv 4658 ran crn 4660 Fn wfn 5249 ⟶wf 5250 –1-1-onto→wf1o 5253 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 2nd c2nd 6192 freccfrec 6443 1c1 7873 + caddc 7875 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 |
This theorem is referenced by: frecuzrdgtcl 10483 frecuzrdgsuc 10485 |
Copyright terms: Public domain | W3C validator |