![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninfdcinf | GIF version |
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
Ref | Expression |
---|---|
nninfdcinf.w | ⊢ (𝜑 → ω ∈ WOmni) |
nninfdcinf.n | ⊢ (𝜑 → 𝑁 ∈ ℕ∞) |
Ref | Expression |
---|---|
nninfdcinf | ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5554 | . . . . . 6 ⊢ (𝑓 = 𝑁 → (𝑓‘𝑥) = (𝑁‘𝑥)) | |
2 | 1 | eqeq1d 2202 | . . . . 5 ⊢ (𝑓 = 𝑁 → ((𝑓‘𝑥) = 1o ↔ (𝑁‘𝑥) = 1o)) |
3 | 2 | ralbidv 2494 | . . . 4 ⊢ (𝑓 = 𝑁 → (∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
4 | 3 | dcbid 839 | . . 3 ⊢ (𝑓 = 𝑁 → (DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
5 | nninfdcinf.w | . . . 4 ⊢ (𝜑 → ω ∈ WOmni) | |
6 | 5 | elexd 2773 | . . . . 5 ⊢ (𝜑 → ω ∈ V) |
7 | iswomnimap 7227 | . . . . 5 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) | |
8 | 6, 7 | syl 14 | . . . 4 ⊢ (𝜑 → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) |
9 | 5, 8 | mpbid 147 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o) |
10 | nninfdcinf.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ∞) | |
11 | nninff 7183 | . . . . 5 ⊢ (𝑁 ∈ ℕ∞ → 𝑁:ω⟶2o) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁:ω⟶2o) |
13 | 2onn 6576 | . . . . . 6 ⊢ 2o ∈ ω | |
14 | 13 | elexi 2772 | . . . . 5 ⊢ 2o ∈ V |
15 | omex 4626 | . . . . 5 ⊢ ω ∈ V | |
16 | 14, 15 | elmap 6733 | . . . 4 ⊢ (𝑁 ∈ (2o ↑𝑚 ω) ↔ 𝑁:ω⟶2o) |
17 | 12, 16 | sylibr 134 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (2o ↑𝑚 ω)) |
18 | 4, 9, 17 | rspcdva 2870 | . 2 ⊢ (𝜑 → DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o) |
19 | 12 | ffnd 5405 | . . . 4 ⊢ (𝜑 → 𝑁 Fn ω) |
20 | eqidd 2194 | . . . 4 ⊢ (𝑥 = 𝑖 → 1o = 1o) | |
21 | 1onn 6575 | . . . . 5 ⊢ 1o ∈ ω | |
22 | 21 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 1o ∈ ω) |
23 | 21 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈ ω) |
24 | 19, 20, 22, 23 | fnmptfvd 5663 | . . 3 ⊢ (𝜑 → (𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
25 | 24 | dcbid 839 | . 2 ⊢ (𝜑 → (DECID 𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
26 | 18, 25 | mpbird 167 | 1 ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ↦ cmpt 4091 ωcom 4623 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 1oc1o 6464 2oc2o 6465 ↑𝑚 cmap 6704 ℕ∞xnninf 7180 WOmnicwomni 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1o 6471 df-2o 6472 df-map 6706 df-nninf 7181 df-womni 7225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |