| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdcinf | GIF version | ||
| Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfdcinf.w | ⊢ (𝜑 → ω ∈ WOmni) |
| nninfdcinf.n | ⊢ (𝜑 → 𝑁 ∈ ℕ∞) |
| Ref | Expression |
|---|---|
| nninfdcinf | ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5602 | . . . . . 6 ⊢ (𝑓 = 𝑁 → (𝑓‘𝑥) = (𝑁‘𝑥)) | |
| 2 | 1 | eqeq1d 2218 | . . . . 5 ⊢ (𝑓 = 𝑁 → ((𝑓‘𝑥) = 1o ↔ (𝑁‘𝑥) = 1o)) |
| 3 | 2 | ralbidv 2510 | . . . 4 ⊢ (𝑓 = 𝑁 → (∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
| 4 | 3 | dcbid 842 | . . 3 ⊢ (𝑓 = 𝑁 → (DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
| 5 | nninfdcinf.w | . . . 4 ⊢ (𝜑 → ω ∈ WOmni) | |
| 6 | 5 | elexd 2793 | . . . . 5 ⊢ (𝜑 → ω ∈ V) |
| 7 | iswomnimap 7301 | . . . . 5 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) | |
| 8 | 6, 7 | syl 14 | . . . 4 ⊢ (𝜑 → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) |
| 9 | 5, 8 | mpbid 147 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o) |
| 10 | nninfdcinf.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ∞) | |
| 11 | nninff 7257 | . . . . 5 ⊢ (𝑁 ∈ ℕ∞ → 𝑁:ω⟶2o) | |
| 12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁:ω⟶2o) |
| 13 | 2onn 6637 | . . . . . 6 ⊢ 2o ∈ ω | |
| 14 | 13 | elexi 2792 | . . . . 5 ⊢ 2o ∈ V |
| 15 | omex 4662 | . . . . 5 ⊢ ω ∈ V | |
| 16 | 14, 15 | elmap 6794 | . . . 4 ⊢ (𝑁 ∈ (2o ↑𝑚 ω) ↔ 𝑁:ω⟶2o) |
| 17 | 12, 16 | sylibr 134 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (2o ↑𝑚 ω)) |
| 18 | 4, 9, 17 | rspcdva 2892 | . 2 ⊢ (𝜑 → DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o) |
| 19 | 12 | ffnd 5450 | . . . 4 ⊢ (𝜑 → 𝑁 Fn ω) |
| 20 | eqidd 2210 | . . . 4 ⊢ (𝑥 = 𝑖 → 1o = 1o) | |
| 21 | 1onn 6636 | . . . . 5 ⊢ 1o ∈ ω | |
| 22 | 21 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 1o ∈ ω) |
| 23 | 21 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈ ω) |
| 24 | 19, 20, 22, 23 | fnmptfvd 5712 | . . 3 ⊢ (𝜑 → (𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
| 25 | 24 | dcbid 842 | . 2 ⊢ (𝜑 → (DECID 𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
| 26 | 18, 25 | mpbird 167 | 1 ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 838 = wceq 1375 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 ↦ cmpt 4124 ωcom 4659 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 1oc1o 6525 2oc2o 6526 ↑𝑚 cmap 6765 ℕ∞xnninf 7254 WOmnicwomni 7298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1o 6532 df-2o 6533 df-map 6767 df-nninf 7255 df-womni 7299 |
| This theorem is referenced by: nninfinfwlpo 7315 |
| Copyright terms: Public domain | W3C validator |