ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcinf GIF version

Theorem nninfdcinf 7237
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
Hypotheses
Ref Expression
nninfdcinf.w (𝜑 → ω ∈ WOmni)
nninfdcinf.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
nninfdcinf (𝜑DECID 𝑁 = (𝑖 ∈ ω ↦ 1o))
Distinct variable groups:   𝑖,𝑁   𝜑,𝑖

Proof of Theorem nninfdcinf
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5557 . . . . . 6 (𝑓 = 𝑁 → (𝑓𝑥) = (𝑁𝑥))
21eqeq1d 2205 . . . . 5 (𝑓 = 𝑁 → ((𝑓𝑥) = 1o ↔ (𝑁𝑥) = 1o))
32ralbidv 2497 . . . 4 (𝑓 = 𝑁 → (∀𝑥 ∈ ω (𝑓𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝑁𝑥) = 1o))
43dcbid 839 . . 3 (𝑓 = 𝑁 → (DECID𝑥 ∈ ω (𝑓𝑥) = 1oDECID𝑥 ∈ ω (𝑁𝑥) = 1o))
5 nninfdcinf.w . . . 4 (𝜑 → ω ∈ WOmni)
65elexd 2776 . . . . 5 (𝜑 → ω ∈ V)
7 iswomnimap 7232 . . . . 5 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o))
86, 7syl 14 . . . 4 (𝜑 → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o))
95, 8mpbid 147 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o)
10 nninfdcinf.n . . . . 5 (𝜑𝑁 ∈ ℕ)
11 nninff 7188 . . . . 5 (𝑁 ∈ ℕ𝑁:ω⟶2o)
1210, 11syl 14 . . . 4 (𝜑𝑁:ω⟶2o)
13 2onn 6579 . . . . . 6 2o ∈ ω
1413elexi 2775 . . . . 5 2o ∈ V
15 omex 4629 . . . . 5 ω ∈ V
1614, 15elmap 6736 . . . 4 (𝑁 ∈ (2o𝑚 ω) ↔ 𝑁:ω⟶2o)
1712, 16sylibr 134 . . 3 (𝜑𝑁 ∈ (2o𝑚 ω))
184, 9, 17rspcdva 2873 . 2 (𝜑DECID𝑥 ∈ ω (𝑁𝑥) = 1o)
1912ffnd 5408 . . . 4 (𝜑𝑁 Fn ω)
20 eqidd 2197 . . . 4 (𝑥 = 𝑖 → 1o = 1o)
21 1onn 6578 . . . . 5 1o ∈ ω
2221a1i 9 . . . 4 ((𝜑𝑥 ∈ ω) → 1o ∈ ω)
2321a1i 9 . . . 4 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
2419, 20, 22, 23fnmptfvd 5666 . . 3 (𝜑 → (𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝑁𝑥) = 1o))
2524dcbid 839 . 2 (𝜑 → (DECID 𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ DECID𝑥 ∈ ω (𝑁𝑥) = 1o))
2618, 25mpbird 167 1 (𝜑DECID 𝑁 = (𝑖 ∈ ω ↦ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cmpt 4094  ωcom 4626  wf 5254  cfv 5258  (class class class)co 5922  1oc1o 6467  2oc2o 6468  𝑚 cmap 6707  xnninf 7185  WOmnicwomni 7229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186  df-womni 7230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator