| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdcinf | GIF version | ||
| Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfdcinf.w | ⊢ (𝜑 → ω ∈ WOmni) |
| nninfdcinf.n | ⊢ (𝜑 → 𝑁 ∈ ℕ∞) |
| Ref | Expression |
|---|---|
| nninfdcinf | ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5557 | . . . . . 6 ⊢ (𝑓 = 𝑁 → (𝑓‘𝑥) = (𝑁‘𝑥)) | |
| 2 | 1 | eqeq1d 2205 | . . . . 5 ⊢ (𝑓 = 𝑁 → ((𝑓‘𝑥) = 1o ↔ (𝑁‘𝑥) = 1o)) |
| 3 | 2 | ralbidv 2497 | . . . 4 ⊢ (𝑓 = 𝑁 → (∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
| 4 | 3 | dcbid 839 | . . 3 ⊢ (𝑓 = 𝑁 → (DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
| 5 | nninfdcinf.w | . . . 4 ⊢ (𝜑 → ω ∈ WOmni) | |
| 6 | 5 | elexd 2776 | . . . . 5 ⊢ (𝜑 → ω ∈ V) |
| 7 | iswomnimap 7232 | . . . . 5 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) | |
| 8 | 6, 7 | syl 14 | . . . 4 ⊢ (𝜑 → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) |
| 9 | 5, 8 | mpbid 147 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o) |
| 10 | nninfdcinf.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ∞) | |
| 11 | nninff 7188 | . . . . 5 ⊢ (𝑁 ∈ ℕ∞ → 𝑁:ω⟶2o) | |
| 12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁:ω⟶2o) |
| 13 | 2onn 6579 | . . . . . 6 ⊢ 2o ∈ ω | |
| 14 | 13 | elexi 2775 | . . . . 5 ⊢ 2o ∈ V |
| 15 | omex 4629 | . . . . 5 ⊢ ω ∈ V | |
| 16 | 14, 15 | elmap 6736 | . . . 4 ⊢ (𝑁 ∈ (2o ↑𝑚 ω) ↔ 𝑁:ω⟶2o) |
| 17 | 12, 16 | sylibr 134 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (2o ↑𝑚 ω)) |
| 18 | 4, 9, 17 | rspcdva 2873 | . 2 ⊢ (𝜑 → DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o) |
| 19 | 12 | ffnd 5408 | . . . 4 ⊢ (𝜑 → 𝑁 Fn ω) |
| 20 | eqidd 2197 | . . . 4 ⊢ (𝑥 = 𝑖 → 1o = 1o) | |
| 21 | 1onn 6578 | . . . . 5 ⊢ 1o ∈ ω | |
| 22 | 21 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 1o ∈ ω) |
| 23 | 21 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈ ω) |
| 24 | 19, 20, 22, 23 | fnmptfvd 5666 | . . 3 ⊢ (𝜑 → (𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
| 25 | 24 | dcbid 839 | . 2 ⊢ (𝜑 → (DECID 𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
| 26 | 18, 25 | mpbird 167 | 1 ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ↦ cmpt 4094 ωcom 4626 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 1oc1o 6467 2oc2o 6468 ↑𝑚 cmap 6707 ℕ∞xnninf 7185 WOmnicwomni 7229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1o 6474 df-2o 6475 df-map 6709 df-nninf 7186 df-womni 7230 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |