ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcinf GIF version

Theorem nninfdcinf 7230
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
Hypotheses
Ref Expression
nninfdcinf.w (𝜑 → ω ∈ WOmni)
nninfdcinf.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
nninfdcinf (𝜑DECID 𝑁 = (𝑖 ∈ ω ↦ 1o))
Distinct variable groups:   𝑖,𝑁   𝜑,𝑖

Proof of Theorem nninfdcinf
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5553 . . . . . 6 (𝑓 = 𝑁 → (𝑓𝑥) = (𝑁𝑥))
21eqeq1d 2202 . . . . 5 (𝑓 = 𝑁 → ((𝑓𝑥) = 1o ↔ (𝑁𝑥) = 1o))
32ralbidv 2494 . . . 4 (𝑓 = 𝑁 → (∀𝑥 ∈ ω (𝑓𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝑁𝑥) = 1o))
43dcbid 839 . . 3 (𝑓 = 𝑁 → (DECID𝑥 ∈ ω (𝑓𝑥) = 1oDECID𝑥 ∈ ω (𝑁𝑥) = 1o))
5 nninfdcinf.w . . . 4 (𝜑 → ω ∈ WOmni)
65elexd 2773 . . . . 5 (𝜑 → ω ∈ V)
7 iswomnimap 7225 . . . . 5 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o))
86, 7syl 14 . . . 4 (𝜑 → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o))
95, 8mpbid 147 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o)
10 nninfdcinf.n . . . . 5 (𝜑𝑁 ∈ ℕ)
11 nninff 7181 . . . . 5 (𝑁 ∈ ℕ𝑁:ω⟶2o)
1210, 11syl 14 . . . 4 (𝜑𝑁:ω⟶2o)
13 2onn 6574 . . . . . 6 2o ∈ ω
1413elexi 2772 . . . . 5 2o ∈ V
15 omex 4625 . . . . 5 ω ∈ V
1614, 15elmap 6731 . . . 4 (𝑁 ∈ (2o𝑚 ω) ↔ 𝑁:ω⟶2o)
1712, 16sylibr 134 . . 3 (𝜑𝑁 ∈ (2o𝑚 ω))
184, 9, 17rspcdva 2869 . 2 (𝜑DECID𝑥 ∈ ω (𝑁𝑥) = 1o)
1912ffnd 5404 . . . 4 (𝜑𝑁 Fn ω)
20 eqidd 2194 . . . 4 (𝑥 = 𝑖 → 1o = 1o)
21 1onn 6573 . . . . 5 1o ∈ ω
2221a1i 9 . . . 4 ((𝜑𝑥 ∈ ω) → 1o ∈ ω)
2321a1i 9 . . . 4 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
2419, 20, 22, 23fnmptfvd 5662 . . 3 (𝜑 → (𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝑁𝑥) = 1o))
2524dcbid 839 . 2 (𝜑 → (DECID 𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ DECID𝑥 ∈ ω (𝑁𝑥) = 1o))
2618, 25mpbird 167 1 (𝜑DECID 𝑁 = (𝑖 ∈ ω ↦ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cmpt 4090  ωcom 4622  wf 5250  cfv 5254  (class class class)co 5918  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702  xnninf 7178  WOmnicwomni 7222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-nninf 7179  df-womni 7223
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator