ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcinf GIF version

Theorem nninfdcinf 7280
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
Hypotheses
Ref Expression
nninfdcinf.w (𝜑 → ω ∈ WOmni)
nninfdcinf.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
nninfdcinf (𝜑DECID 𝑁 = (𝑖 ∈ ω ↦ 1o))
Distinct variable groups:   𝑖,𝑁   𝜑,𝑖

Proof of Theorem nninfdcinf
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5582 . . . . . 6 (𝑓 = 𝑁 → (𝑓𝑥) = (𝑁𝑥))
21eqeq1d 2215 . . . . 5 (𝑓 = 𝑁 → ((𝑓𝑥) = 1o ↔ (𝑁𝑥) = 1o))
32ralbidv 2507 . . . 4 (𝑓 = 𝑁 → (∀𝑥 ∈ ω (𝑓𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝑁𝑥) = 1o))
43dcbid 840 . . 3 (𝑓 = 𝑁 → (DECID𝑥 ∈ ω (𝑓𝑥) = 1oDECID𝑥 ∈ ω (𝑁𝑥) = 1o))
5 nninfdcinf.w . . . 4 (𝜑 → ω ∈ WOmni)
65elexd 2786 . . . . 5 (𝜑 → ω ∈ V)
7 iswomnimap 7275 . . . . 5 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o))
86, 7syl 14 . . . 4 (𝜑 → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o))
95, 8mpbid 147 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o)
10 nninfdcinf.n . . . . 5 (𝜑𝑁 ∈ ℕ)
11 nninff 7231 . . . . 5 (𝑁 ∈ ℕ𝑁:ω⟶2o)
1210, 11syl 14 . . . 4 (𝜑𝑁:ω⟶2o)
13 2onn 6614 . . . . . 6 2o ∈ ω
1413elexi 2785 . . . . 5 2o ∈ V
15 omex 4645 . . . . 5 ω ∈ V
1614, 15elmap 6771 . . . 4 (𝑁 ∈ (2o𝑚 ω) ↔ 𝑁:ω⟶2o)
1712, 16sylibr 134 . . 3 (𝜑𝑁 ∈ (2o𝑚 ω))
184, 9, 17rspcdva 2883 . 2 (𝜑DECID𝑥 ∈ ω (𝑁𝑥) = 1o)
1912ffnd 5432 . . . 4 (𝜑𝑁 Fn ω)
20 eqidd 2207 . . . 4 (𝑥 = 𝑖 → 1o = 1o)
21 1onn 6613 . . . . 5 1o ∈ ω
2221a1i 9 . . . 4 ((𝜑𝑥 ∈ ω) → 1o ∈ ω)
2321a1i 9 . . . 4 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
2419, 20, 22, 23fnmptfvd 5691 . . 3 (𝜑 → (𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝑁𝑥) = 1o))
2524dcbid 840 . 2 (𝜑 → (DECID 𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ DECID𝑥 ∈ ω (𝑁𝑥) = 1o))
2618, 25mpbird 167 1 (𝜑DECID 𝑁 = (𝑖 ∈ ω ↦ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  cmpt 4109  ωcom 4642  wf 5272  cfv 5276  (class class class)co 5951  1oc1o 6502  2oc2o 6503  𝑚 cmap 6742  xnninf 7228  WOmnicwomni 7272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510  df-map 6744  df-nninf 7229  df-womni 7273
This theorem is referenced by:  nninfinfwlpo  7289
  Copyright terms: Public domain W3C validator