Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfdcinf | GIF version |
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
Ref | Expression |
---|---|
nninfdcinf.w | ⊢ (𝜑 → ω ∈ WOmni) |
nninfdcinf.n | ⊢ (𝜑 → 𝑁 ∈ ℕ∞) |
Ref | Expression |
---|---|
nninfdcinf | ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5495 | . . . . . 6 ⊢ (𝑓 = 𝑁 → (𝑓‘𝑥) = (𝑁‘𝑥)) | |
2 | 1 | eqeq1d 2179 | . . . . 5 ⊢ (𝑓 = 𝑁 → ((𝑓‘𝑥) = 1o ↔ (𝑁‘𝑥) = 1o)) |
3 | 2 | ralbidv 2470 | . . . 4 ⊢ (𝑓 = 𝑁 → (∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
4 | 3 | dcbid 833 | . . 3 ⊢ (𝑓 = 𝑁 → (DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
5 | nninfdcinf.w | . . . 4 ⊢ (𝜑 → ω ∈ WOmni) | |
6 | 5 | elexd 2743 | . . . . 5 ⊢ (𝜑 → ω ∈ V) |
7 | iswomnimap 7142 | . . . . 5 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) | |
8 | 6, 7 | syl 14 | . . . 4 ⊢ (𝜑 → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) |
9 | 5, 8 | mpbid 146 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o) |
10 | nninfdcinf.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ∞) | |
11 | nninff 7099 | . . . . 5 ⊢ (𝑁 ∈ ℕ∞ → 𝑁:ω⟶2o) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁:ω⟶2o) |
13 | 2onn 6500 | . . . . . 6 ⊢ 2o ∈ ω | |
14 | 13 | elexi 2742 | . . . . 5 ⊢ 2o ∈ V |
15 | omex 4577 | . . . . 5 ⊢ ω ∈ V | |
16 | 14, 15 | elmap 6655 | . . . 4 ⊢ (𝑁 ∈ (2o ↑𝑚 ω) ↔ 𝑁:ω⟶2o) |
17 | 12, 16 | sylibr 133 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (2o ↑𝑚 ω)) |
18 | 4, 9, 17 | rspcdva 2839 | . 2 ⊢ (𝜑 → DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o) |
19 | 12 | ffnd 5348 | . . . 4 ⊢ (𝜑 → 𝑁 Fn ω) |
20 | eqidd 2171 | . . . 4 ⊢ (𝑥 = 𝑖 → 1o = 1o) | |
21 | 1onn 6499 | . . . . 5 ⊢ 1o ∈ ω | |
22 | 21 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 1o ∈ ω) |
23 | 21 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈ ω) |
24 | 19, 20, 22, 23 | fnmptfvd 5600 | . . 3 ⊢ (𝜑 → (𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
25 | 24 | dcbid 833 | . 2 ⊢ (𝜑 → (DECID 𝑁 = (𝑖 ∈ ω ↦ 1o) ↔ DECID ∀𝑥 ∈ ω (𝑁‘𝑥) = 1o)) |
26 | 18, 25 | mpbird 166 | 1 ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ↦ cmpt 4050 ωcom 4574 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 1oc1o 6388 2oc2o 6389 ↑𝑚 cmap 6626 ℕ∞xnninf 7096 WOmnicwomni 7139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1o 6395 df-2o 6396 df-map 6628 df-nninf 7097 df-womni 7140 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |