ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3p1 GIF version

Theorem seq3p1 10574
Description: Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
Hypotheses
Ref Expression
seq3p1.m (𝜑𝑁 ∈ (ℤ𝑀))
seq3p1.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3p1.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3p1 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3p1
Dummy variables 𝑎 𝑏 𝑤 𝑧 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3p1.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9623 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
4 fveq2 5561 . . . . . 6 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
54eleq1d 2265 . . . . 5 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
6 seq3p1.f . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
76ralrimiva 2570 . . . . 5 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
8 uzid 9632 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
93, 8syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
105, 7, 9rspcdva 2873 . . . 4 (𝜑 → (𝐹𝑀) ∈ 𝑆)
11 ssv 3206 . . . . 5 𝑆 ⊆ V
1211a1i 9 . . . 4 (𝜑𝑆 ⊆ V)
13 seq3p1.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
146, 13iseqovex 10567 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
15 iseqvalcbv 10568 . . . 4 frec((𝑎 ∈ (ℤ𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
163, 15, 6, 13seq3val 10569 . . . 4 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩))
173, 10, 12, 14, 15, 16frecuzrdgsuct 10533 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
181, 17mpdan 421 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
19 eqid 2196 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2019, 3, 6, 13seqf 10573 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
2120, 1ffvelcdmd 5701 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
22 fveq2 5561 . . . . . 6 (𝑥 = (𝑁 + 1) → (𝐹𝑥) = (𝐹‘(𝑁 + 1)))
2322eleq1d 2265 . . . . 5 (𝑥 = (𝑁 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑁 + 1)) ∈ 𝑆))
24 peano2uz 9674 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
251, 24syl 14 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
2623, 7, 25rspcdva 2873 . . . 4 (𝜑 → (𝐹‘(𝑁 + 1)) ∈ 𝑆)
2713, 21, 26caovcld 6081 . . 3 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆)
28 fvoveq1 5948 . . . . 5 (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1)))
2928oveq2d 5941 . . . 4 (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1))))
30 oveq1 5932 . . . 4 (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
31 eqid 2196 . . . 4 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3229, 30, 31ovmpog 6061 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆 ∧ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆) → (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
331, 21, 27, 32syl3anc 1249 . 2 (𝜑 → (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
3418, 33eqtrd 2229 1 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  cop 3626  cfv 5259  (class class class)co 5925  cmpo 5927  freccfrec 6457  1c1 7897   + caddc 7899  cz 9343  cuz 9618  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557
This theorem is referenced by:  seqp1g  10575  seq3clss  10580  seq3m1  10582  seq3fveq2  10584  seq3shft2  10590  ser3mono  10596  seq3split  10597  seq3caopr3  10600  seq3id3  10633  seq3id2  10635  seq3homo  10636  seq3z  10637  seqfeq4g  10640  ser3ge0  10645  exp3vallem  10649  expp1  10655  facp1  10839  seq3coll  10951  resqrexlemfp1  11191  climserle  11527  clim2prod  11721  prodfap0  11727  prodfrecap  11728  ege2le3  11853  efgt1p2  11877  efgt1p  11878  algrp1  12239  pcmpt  12537  nninfdclemp1  12692  gsumsplit1r  13100  gsumprval  13101  gsumfzz  13197  mulgnnp1  13336
  Copyright terms: Public domain W3C validator