![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seq3p1 | GIF version |
Description: Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.) |
Ref | Expression |
---|---|
seq3p1.m | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seq3p1.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
seq3p1.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
seq3p1 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3p1.m | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 9547 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | fveq2 5527 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) | |
5 | 4 | eleq1d 2256 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) |
6 | seq3p1.f | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
7 | 6 | ralrimiva 2560 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
8 | uzid 9556 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
9 | 3, 8 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
10 | 5, 7, 9 | rspcdva 2858 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) |
11 | ssv 3189 | . . . . 5 ⊢ 𝑆 ⊆ V | |
12 | 11 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ V) |
13 | seq3p1.pl | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
14 | 6, 13 | iseqovex 10470 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
15 | iseqvalcbv 10471 | . . . 4 ⊢ frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹‘𝑀)⟩) | |
16 | 3, 15, 6, 13 | seq3val 10472 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹‘𝑀)⟩)) |
17 | 3, 10, 12, 14, 15, 16 | frecuzrdgsuct 10438 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
18 | 1, 17 | mpdan 421 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
19 | eqid 2187 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
20 | 19, 3, 6, 13 | seqf 10475 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
21 | 20, 1 | ffvelcdmd 5665 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) |
22 | fveq2 5527 | . . . . . 6 ⊢ (𝑥 = (𝑁 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑁 + 1))) | |
23 | 22 | eleq1d 2256 | . . . . 5 ⊢ (𝑥 = (𝑁 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑁 + 1)) ∈ 𝑆)) |
24 | peano2uz 9597 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
25 | 1, 24 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
26 | 23, 7, 25 | rspcdva 2858 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑁 + 1)) ∈ 𝑆) |
27 | 13, 21, 26 | caovcld 6042 | . . 3 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆) |
28 | fvoveq1 5911 | . . . . 5 ⊢ (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1))) | |
29 | 28 | oveq2d 5904 | . . . 4 ⊢ (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1)))) |
30 | oveq1 5895 | . . . 4 ⊢ (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
31 | eqid 2187 | . . . 4 ⊢ (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) | |
32 | 29, 30, 31 | ovmpog 6023 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆 ∧ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆) → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
33 | 1, 21, 27, 32 | syl3anc 1248 | . 2 ⊢ (𝜑 → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
34 | 18, 33 | eqtrd 2220 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ⊆ wss 3141 ⟨cop 3607 ‘cfv 5228 (class class class)co 5888 ∈ cmpo 5890 freccfrec 6405 1c1 7826 + caddc 7828 ℤcz 9267 ℤ≥cuz 9542 seqcseq 10459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-inn 8934 df-n0 9191 df-z 9268 df-uz 9543 df-seqfrec 10460 |
This theorem is referenced by: seq3clss 10481 seq3m1 10482 seq3fveq2 10483 seq3shft2 10487 ser3mono 10492 seq3split 10493 seq3caopr3 10495 seq3id3 10521 seq3id2 10523 seq3homo 10524 seq3z 10525 ser3ge0 10531 exp3vallem 10535 expp1 10541 facp1 10724 seq3coll 10836 resqrexlemfp1 11032 climserle 11367 clim2prod 11561 prodfap0 11567 prodfrecap 11568 ege2le3 11693 efgt1p2 11717 efgt1p 11718 algrp1 12060 pcmpt 12355 nninfdclemp1 12465 mulgnnp1 13023 |
Copyright terms: Public domain | W3C validator |