Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3p1 | GIF version |
Description: Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.) |
Ref | Expression |
---|---|
seq3p1.m | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seq3p1.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
seq3p1.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
seq3p1 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3p1.m | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 9449 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | fveq2 5470 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) | |
5 | 4 | eleq1d 2226 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) |
6 | seq3p1.f | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
7 | 6 | ralrimiva 2530 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
8 | uzid 9458 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
9 | 3, 8 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
10 | 5, 7, 9 | rspcdva 2821 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) |
11 | ssv 3150 | . . . . 5 ⊢ 𝑆 ⊆ V | |
12 | 11 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ V) |
13 | seq3p1.pl | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
14 | 6, 13 | iseqovex 10364 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
15 | iseqvalcbv 10365 | . . . 4 ⊢ frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | |
16 | 3, 15, 6, 13 | seq3val 10366 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
17 | 3, 10, 12, 14, 15, 16 | frecuzrdgsuct 10332 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
18 | 1, 17 | mpdan 418 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
19 | eqid 2157 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
20 | 19, 3, 6, 13 | seqf 10369 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
21 | 20, 1 | ffvelrnd 5605 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) |
22 | fveq2 5470 | . . . . . 6 ⊢ (𝑥 = (𝑁 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑁 + 1))) | |
23 | 22 | eleq1d 2226 | . . . . 5 ⊢ (𝑥 = (𝑁 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑁 + 1)) ∈ 𝑆)) |
24 | peano2uz 9499 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
25 | 1, 24 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
26 | 23, 7, 25 | rspcdva 2821 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑁 + 1)) ∈ 𝑆) |
27 | 13, 21, 26 | caovcld 5976 | . . 3 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆) |
28 | fvoveq1 5849 | . . . . 5 ⊢ (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1))) | |
29 | 28 | oveq2d 5842 | . . . 4 ⊢ (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1)))) |
30 | oveq1 5833 | . . . 4 ⊢ (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
31 | eqid 2157 | . . . 4 ⊢ (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) | |
32 | 29, 30, 31 | ovmpog 5957 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆 ∧ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆) → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
33 | 1, 21, 27, 32 | syl3anc 1220 | . 2 ⊢ (𝜑 → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
34 | 18, 33 | eqtrd 2190 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ⊆ wss 3102 〈cop 3564 ‘cfv 5172 (class class class)co 5826 ∈ cmpo 5828 freccfrec 6339 1c1 7735 + caddc 7737 ℤcz 9172 ℤ≥cuz 9444 seqcseq 10353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4081 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-iinf 4549 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-addcom 7834 ax-addass 7836 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-0id 7842 ax-rnegex 7843 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-ltadd 7850 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4028 df-mpt 4029 df-tr 4065 df-id 4255 df-iord 4328 df-on 4330 df-ilim 4331 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1st 6090 df-2nd 6091 df-recs 6254 df-frec 6340 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-inn 8839 df-n0 9096 df-z 9173 df-uz 9445 df-seqfrec 10354 |
This theorem is referenced by: seq3clss 10375 seq3m1 10376 seq3fveq2 10377 seq3shft2 10381 ser3mono 10386 seq3split 10387 seq3caopr3 10389 seq3id3 10415 seq3id2 10417 seq3homo 10418 seq3z 10419 ser3ge0 10425 exp3vallem 10429 expp1 10435 facp1 10615 seq3coll 10724 resqrexlemfp1 10920 climserle 11253 clim2prod 11447 prodfap0 11453 prodfrecap 11454 ege2le3 11579 efgt1p2 11603 efgt1p 11604 algrp1 11938 nninfdclemp1 12251 |
Copyright terms: Public domain | W3C validator |