ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3p1 GIF version

Theorem seq3p1 10642
Description: Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
Hypotheses
Ref Expression
seq3p1.m (𝜑𝑁 ∈ (ℤ𝑀))
seq3p1.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3p1.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3p1 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3p1
Dummy variables 𝑎 𝑏 𝑤 𝑧 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3p1.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9683 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
4 fveq2 5594 . . . . . 6 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
54eleq1d 2275 . . . . 5 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
6 seq3p1.f . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
76ralrimiva 2580 . . . . 5 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
8 uzid 9692 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
93, 8syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
105, 7, 9rspcdva 2886 . . . 4 (𝜑 → (𝐹𝑀) ∈ 𝑆)
11 ssv 3219 . . . . 5 𝑆 ⊆ V
1211a1i 9 . . . 4 (𝜑𝑆 ⊆ V)
13 seq3p1.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
146, 13iseqovex 10635 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
15 iseqvalcbv 10636 . . . 4 frec((𝑎 ∈ (ℤ𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
163, 15, 6, 13seq3val 10637 . . . 4 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩))
173, 10, 12, 14, 15, 16frecuzrdgsuct 10601 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
181, 17mpdan 421 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
19 eqid 2206 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2019, 3, 6, 13seqf 10641 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
2120, 1ffvelcdmd 5734 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
22 fveq2 5594 . . . . . 6 (𝑥 = (𝑁 + 1) → (𝐹𝑥) = (𝐹‘(𝑁 + 1)))
2322eleq1d 2275 . . . . 5 (𝑥 = (𝑁 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑁 + 1)) ∈ 𝑆))
24 peano2uz 9734 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
251, 24syl 14 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
2623, 7, 25rspcdva 2886 . . . 4 (𝜑 → (𝐹‘(𝑁 + 1)) ∈ 𝑆)
2713, 21, 26caovcld 6118 . . 3 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆)
28 fvoveq1 5985 . . . . 5 (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1)))
2928oveq2d 5978 . . . 4 (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1))))
30 oveq1 5969 . . . 4 (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
31 eqid 2206 . . . 4 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3229, 30, 31ovmpog 6098 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆 ∧ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆) → (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
331, 21, 27, 32syl3anc 1250 . 2 (𝜑 → (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
3418, 33eqtrd 2239 1 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  cop 3641  cfv 5285  (class class class)co 5962  cmpo 5964  freccfrec 6494  1c1 7956   + caddc 7958  cz 9402  cuz 9678  seqcseq 10624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-seqfrec 10625
This theorem is referenced by:  seqp1g  10643  seq3clss  10648  seq3m1  10650  seq3fveq2  10652  seq3shft2  10658  ser3mono  10664  seq3split  10665  seq3caopr3  10668  seq3id3  10701  seq3id2  10703  seq3homo  10704  seq3z  10705  seqfeq4g  10708  ser3ge0  10713  exp3vallem  10717  expp1  10723  facp1  10907  seq3coll  11019  resqrexlemfp1  11405  climserle  11741  clim2prod  11935  prodfap0  11941  prodfrecap  11942  ege2le3  12067  efgt1p2  12091  efgt1p  12092  algrp1  12453  pcmpt  12751  nninfdclemp1  12906  gsumsplit1r  13315  gsumprval  13316  gsumfzz  13412  mulgnnp1  13551
  Copyright terms: Public domain W3C validator