ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqp1cd GIF version

Theorem seqp1cd 10541
Description: Value of the sequence builder function at a successor. A version of seq3p1 10536 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqp1cd.m (𝜑𝑁 ∈ (ℤ𝑀))
seqp1cd.1 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqp1cd.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqp1cd.5 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqp1cd (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seqp1cd
Dummy variables 𝑎 𝑏 𝑤 𝑧 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqp1cd.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9597 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
4 seqp1cd.1 . . . 4 (𝜑 → (𝐹𝑀) ∈ 𝐶)
5 ssv 3201 . . . . 5 𝐶 ⊆ V
65a1i 9 . . . 4 (𝜑𝐶 ⊆ V)
7 seqp1cd.5 . . . . 5 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
8 seqp1cd.2 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
97, 8seqovcd 10538 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
10 iseqvalcbv 10530 . . . 4 frec((𝑎 ∈ (ℤ𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝐶 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
113, 10, 4, 8, 7seqvalcd 10532 . . . 4 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝐶 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩))
123, 4, 6, 9, 10, 11frecuzrdgsuct 10495 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
131, 12mpdan 421 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
14 eqid 2193 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
154, 8, 14, 3, 7seqf2 10539 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶)
1615, 1ffvelcdmd 5694 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)
17 fveq2 5554 . . . . . 6 (𝑥 = (𝑁 + 1) → (𝐹𝑥) = (𝐹‘(𝑁 + 1)))
1817eleq1d 2262 . . . . 5 (𝑥 = (𝑁 + 1) → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹‘(𝑁 + 1)) ∈ 𝐷))
197ralrimiva 2567 . . . . 5 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑥) ∈ 𝐷)
20 eluzp1p1 9618 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
211, 20syl 14 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
2218, 19, 21rspcdva 2869 . . . 4 (𝜑 → (𝐹‘(𝑁 + 1)) ∈ 𝐷)
238, 16, 22caovcld 6072 . . 3 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝐶)
24 fvoveq1 5941 . . . . 5 (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1)))
2524oveq2d 5934 . . . 4 (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1))))
26 oveq1 5925 . . . 4 (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
27 eqid 2193 . . . 4 (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
2825, 26, 27ovmpog 6053 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶 ∧ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝐶) → (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
291, 16, 23, 28syl3anc 1249 . 2 (𝜑 → (𝑁(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
3013, 29eqtrd 2226 1 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  cop 3621  cfv 5254  (class class class)co 5918  cmpo 5920  freccfrec 6443  1c1 7873   + caddc 7875  cz 9317  cuz 9592  seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519
This theorem is referenced by:  ennnfonelemp1  12563
  Copyright terms: Public domain W3C validator