![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seqp1cd | GIF version |
Description: Value of the sequence builder function at a successor. A version of seq3p1 10456 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
seqp1cd.m | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqp1cd.1 | ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) |
seqp1cd.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
seqp1cd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) |
Ref | Expression |
---|---|
seqp1cd | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqp1cd.m | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 9528 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | seqp1cd.1 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) | |
5 | ssv 3177 | . . . . 5 ⊢ 𝐶 ⊆ V | |
6 | 5 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ V) |
7 | seqp1cd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) | |
8 | seqp1cd.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) | |
9 | 7, 8 | seqovcd 10457 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶) |
10 | iseqvalcbv 10451 | . . . 4 ⊢ frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝐶 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | |
11 | 3, 10, 4, 8, 7 | seqvalcd 10453 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝐶 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
12 | 3, 4, 6, 9, 10, 11 | frecuzrdgsuct 10418 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
13 | 1, 12 | mpdan 421 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
14 | eqid 2177 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
15 | 4, 8, 14, 3, 7 | seqf2 10458 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶) |
16 | 15, 1 | ffvelcdmd 5650 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶) |
17 | fveq2 5513 | . . . . . 6 ⊢ (𝑥 = (𝑁 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑁 + 1))) | |
18 | 17 | eleq1d 2246 | . . . . 5 ⊢ (𝑥 = (𝑁 + 1) → ((𝐹‘𝑥) ∈ 𝐷 ↔ (𝐹‘(𝑁 + 1)) ∈ 𝐷)) |
19 | 7 | ralrimiva 2550 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑥) ∈ 𝐷) |
20 | eluzp1p1 9548 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) | |
21 | 1, 20 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) |
22 | 18, 19, 21 | rspcdva 2846 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑁 + 1)) ∈ 𝐷) |
23 | 8, 16, 22 | caovcld 6024 | . . 3 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝐶) |
24 | fvoveq1 5894 | . . . . 5 ⊢ (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1))) | |
25 | 24 | oveq2d 5887 | . . . 4 ⊢ (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1)))) |
26 | oveq1 5878 | . . . 4 ⊢ (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
27 | eqid 2177 | . . . 4 ⊢ (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) | |
28 | 25, 26, 27 | ovmpog 6005 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶 ∧ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝐶) → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
29 | 1, 16, 23, 28 | syl3anc 1238 | . 2 ⊢ (𝜑 → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
30 | 13, 29 | eqtrd 2210 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2737 ⊆ wss 3129 〈cop 3595 ‘cfv 5214 (class class class)co 5871 ∈ cmpo 5873 freccfrec 6387 1c1 7808 + caddc 7810 ℤcz 9248 ℤ≥cuz 9523 seqcseq 10439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 ax-cnex 7898 ax-resscn 7899 ax-1cn 7900 ax-1re 7901 ax-icn 7902 ax-addcl 7903 ax-addrcl 7904 ax-mulcl 7905 ax-addcom 7907 ax-addass 7909 ax-distr 7911 ax-i2m1 7912 ax-0lt1 7913 ax-0id 7915 ax-rnegex 7916 ax-cnre 7918 ax-pre-ltirr 7919 ax-pre-ltwlin 7920 ax-pre-lttrn 7921 ax-pre-ltadd 7923 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-id 4292 df-iord 4365 df-on 4367 df-ilim 4368 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5176 df-fun 5216 df-fn 5217 df-f 5218 df-f1 5219 df-fo 5220 df-f1o 5221 df-fv 5222 df-riota 5827 df-ov 5874 df-oprab 5875 df-mpo 5876 df-1st 6137 df-2nd 6138 df-recs 6302 df-frec 6388 df-pnf 7989 df-mnf 7990 df-xr 7991 df-ltxr 7992 df-le 7993 df-sub 8125 df-neg 8126 df-inn 8915 df-n0 9172 df-z 9249 df-uz 9524 df-seqfrec 10440 |
This theorem is referenced by: ennnfonelemp1 12398 |
Copyright terms: Public domain | W3C validator |