| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqp1cd | GIF version | ||
| Description: Value of the sequence builder function at a successor. A version of seq3p1 10682 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| Ref | Expression |
|---|---|
| seqp1cd.m | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| seqp1cd.1 | ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) |
| seqp1cd.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
| seqp1cd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) |
| Ref | Expression |
|---|---|
| seqp1cd | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqp1cd.m | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzel2 9723 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 4 | seqp1cd.1 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) | |
| 5 | ssv 3246 | . . . . 5 ⊢ 𝐶 ⊆ V | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ V) |
| 7 | seqp1cd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) | |
| 8 | seqp1cd.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) | |
| 9 | 7, 8 | seqovcd 10684 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶) |
| 10 | iseqvalcbv 10676 | . . . 4 ⊢ frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝐶 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 11 | 3, 10, 4, 8, 7 | seqvalcd 10678 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝐶 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
| 12 | 3, 4, 6, 9, 10, 11 | frecuzrdgsuct 10641 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
| 13 | 1, 12 | mpdan 421 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
| 14 | eqid 2229 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 15 | 4, 8, 14, 3, 7 | seqf2 10685 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶) |
| 16 | 15, 1 | ffvelcdmd 5770 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶) |
| 17 | fveq2 5626 | . . . . . 6 ⊢ (𝑥 = (𝑁 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑁 + 1))) | |
| 18 | 17 | eleq1d 2298 | . . . . 5 ⊢ (𝑥 = (𝑁 + 1) → ((𝐹‘𝑥) ∈ 𝐷 ↔ (𝐹‘(𝑁 + 1)) ∈ 𝐷)) |
| 19 | 7 | ralrimiva 2603 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑥) ∈ 𝐷) |
| 20 | eluzp1p1 9744 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) | |
| 21 | 1, 20 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) |
| 22 | 18, 19, 21 | rspcdva 2912 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑁 + 1)) ∈ 𝐷) |
| 23 | 8, 16, 22 | caovcld 6158 | . . 3 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝐶) |
| 24 | fvoveq1 6023 | . . . . 5 ⊢ (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1))) | |
| 25 | 24 | oveq2d 6016 | . . . 4 ⊢ (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1)))) |
| 26 | oveq1 6007 | . . . 4 ⊢ (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
| 27 | eqid 2229 | . . . 4 ⊢ (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) | |
| 28 | 25, 26, 27 | ovmpog 6138 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶 ∧ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝐶) → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| 29 | 1, 16, 23, 28 | syl3anc 1271 | . 2 ⊢ (𝜑 → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| 30 | 13, 29 | eqtrd 2262 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 〈cop 3669 ‘cfv 5317 (class class class)co 6000 ∈ cmpo 6002 freccfrec 6534 1c1 7996 + caddc 7998 ℤcz 9442 ℤ≥cuz 9718 seqcseq 10664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 |
| This theorem is referenced by: ennnfonelemp1 12972 |
| Copyright terms: Public domain | W3C validator |