ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letri3 GIF version

Theorem letri3 8183
Description: Tightness of real apartness. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
letri3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem letri3
StepHypRef Expression
1 lttri3 8182 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
2 ancom 266 . . 3 ((¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
31, 2bitr4di 198 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
4 lenlt 8178 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5 lenlt 8178 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
65ancoms 268 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
74, 6anbi12d 473 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
83, 7bitr4d 191 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177   class class class wbr 4054  cr 7954   < clt 8137  cle 8138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-pre-ltirr 8067  ax-pre-apti 8070
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-xp 4694  df-cnv 4696  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143
This theorem is referenced by:  eqlelt  8189  letri3i  8201  letri3d  8218  lesub0  8582  lbreu  9048  nnle1eq1  9090  nn0le0eq0  9353  nn0lt10b  9483  zextle  9494  uz11  9701  uzin  9711  nn01to3  9768  elfz1eq  10187  fsum00  11858  dvdsabseq  12243  nn0seqcvgd  12448  infpnlem1  12767  lgsdir  15597  lgsabs1  15601
  Copyright terms: Public domain W3C validator