![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodbn0 | GIF version |
Description: The base set of a left module is nonempty. It is also inhabited (by lmod0vcl 13658). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodbn0.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
lmodbn0 | ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 13635 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | grpbn0 12997 | . 2 ⊢ (𝑊 ∈ Grp → 𝐵 ≠ ∅) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 ∅c0 3437 ‘cfv 5238 Basecbs 12523 Grpcgrp 12968 LModclmod 13628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-cnex 7937 ax-resscn 7938 ax-1re 7940 ax-addrcl 7943 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-iota 5199 df-fun 5240 df-fn 5241 df-fv 5246 df-riota 5855 df-ov 5903 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-ndx 12526 df-slot 12527 df-base 12529 df-plusg 12613 df-mulr 12614 df-sca 12616 df-vsca 12617 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-lmod 13630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |