![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodfgrp | GIF version |
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmodfgrp | β’ (π β LMod β πΉ β Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodring.1 | . . 3 β’ πΉ = (Scalarβπ) | |
2 | 1 | lmodring 13390 | . 2 β’ (π β LMod β πΉ β Ring) |
3 | ringgrp 13189 | . 2 β’ (πΉ β Ring β πΉ β Grp) | |
4 | 2, 3 | syl 14 | 1 β’ (π β LMod β πΉ β Grp) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 βcfv 5218 Scalarcsca 12541 Grpcgrp 12882 Ringcrg 13184 LModclmod 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-mulr 12552 df-sca 12554 df-vsca 12555 df-ring 13186 df-lmod 13384 |
This theorem is referenced by: lmodacl 13394 lmodsn0 13396 lmodvneg1 13425 lssvsubcl 13457 lspsnneg 13511 |
Copyright terms: Public domain | W3C validator |