Step | Hyp | Ref
| Expression |
1 | | simpll 527 |
. . 3
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β π β LMod) |
2 | | simplr 528 |
. . . 4
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β π β π) |
3 | | simprl 529 |
. . . 4
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β π β π) |
4 | | eqid 2177 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
5 | | lssvsubcl.s |
. . . . 5
β’ π = (LSubSpβπ) |
6 | 4, 5 | lsselg 13454 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β π β (Baseβπ)) |
7 | 1, 2, 3, 6 | syl3anc 1238 |
. . 3
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β π β (Baseβπ)) |
8 | | simprr 531 |
. . . 4
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β π β π) |
9 | 4, 5 | lsselg 13454 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β π β (Baseβπ)) |
10 | 1, 2, 8, 9 | syl3anc 1238 |
. . 3
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β π β (Baseβπ)) |
11 | | eqid 2177 |
. . . 4
β’
(+gβπ) = (+gβπ) |
12 | | lssvsubcl.m |
. . . 4
β’ β =
(-gβπ) |
13 | | eqid 2177 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
14 | | eqid 2177 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
15 | | eqid 2177 |
. . . 4
β’
(invgβ(Scalarβπ)) =
(invgβ(Scalarβπ)) |
16 | | eqid 2177 |
. . . 4
β’
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ)) |
17 | 4, 11, 12, 13, 14, 15, 16 | lmodvsubval2 13438 |
. . 3
β’ ((π β LMod β§ π β (Baseβπ) β§ π β (Baseβπ)) β (π β π) = (π(+gβπ)(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π))) |
18 | 1, 7, 10, 17 | syl3anc 1238 |
. 2
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β (π β π) = (π(+gβπ)(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π))) |
19 | 13 | lmodfgrp 13392 |
. . . . . . 7
β’ (π β LMod β
(Scalarβπ) β
Grp) |
20 | 1, 19 | syl 14 |
. . . . . 6
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β (Scalarβπ) β Grp) |
21 | | eqid 2177 |
. . . . . . . 8
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
22 | 13, 21, 16 | lmod1cl 13411 |
. . . . . . 7
β’ (π β LMod β
(1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
23 | 1, 22 | syl 14 |
. . . . . 6
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β
(1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
24 | 21, 15 | grpinvcl 12927 |
. . . . . 6
β’
(((Scalarβπ)
β Grp β§ (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) β
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))) |
25 | 20, 23, 24 | syl2anc 411 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))) |
26 | 4, 13, 14, 21 | lmodvscl 13401 |
. . . . 5
β’ ((π β LMod β§
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))
β§ π β (Baseβπ)) β
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π) β (Baseβπ)) |
27 | 1, 25, 10, 26 | syl3anc 1238 |
. . . 4
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π) β (Baseβπ)) |
28 | 4, 11 | lmodcom 13429 |
. . . 4
β’ ((π β LMod β§ π β (Baseβπ) β§
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π) β (Baseβπ)) β (π(+gβπ)(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π)) =
((((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π)(+gβπ)π)) |
29 | 1, 7, 27, 28 | syl3anc 1238 |
. . 3
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β (π(+gβπ)(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π)) =
((((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π)(+gβπ)π)) |
30 | 13, 21, 11, 14, 5 | lssclg 13457 |
. . . 4
β’ ((π β LMod β§ π β π β§
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))
β§ π β π β§ π β π)) β
((((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π)(+gβπ)π) β π) |
31 | 1, 2, 25, 8, 3, 30 | syl113anc 1250 |
. . 3
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β
((((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π)(+gβπ)π) β π) |
32 | 29, 31 | eqeltrd 2254 |
. 2
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β (π(+gβπ)(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π)) β π) |
33 | 18, 32 | eqeltrd 2254 |
1
β’ (((π β LMod β§ π β π) β§ (π β π β§ π β π)) β (π β π) β π) |