Proof of Theorem lssvsubcl
Step | Hyp | Ref
| Expression |
1 | | simpll 527 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑊 ∈ LMod) |
2 | | simplr 528 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) |
3 | | simprl 529 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ 𝑈) |
4 | | eqid 2189 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
5 | | lssvsubcl.s |
. . . . 5
⊢ 𝑆 = (LSubSp‘𝑊) |
6 | 4, 5 | lsselg 13677 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
7 | 1, 2, 3, 6 | syl3anc 1249 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ (Base‘𝑊)) |
8 | | simprr 531 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ 𝑈) |
9 | 4, 5 | lsselg 13677 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Base‘𝑊)) |
10 | 1, 2, 8, 9 | syl3anc 1249 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ (Base‘𝑊)) |
11 | | eqid 2189 |
. . . 4
⊢
(+g‘𝑊) = (+g‘𝑊) |
12 | | lssvsubcl.m |
. . . 4
⊢ − =
(-g‘𝑊) |
13 | | eqid 2189 |
. . . 4
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
14 | | eqid 2189 |
. . . 4
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
15 | | eqid 2189 |
. . . 4
⊢
(invg‘(Scalar‘𝑊)) =
(invg‘(Scalar‘𝑊)) |
16 | | eqid 2189 |
. . . 4
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
17 | 4, 11, 12, 13, 14, 15, 16 | lmodvsubval2 13658 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑌 ∈ (Base‘𝑊)) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌))) |
18 | 1, 7, 10, 17 | syl3anc 1249 |
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌))) |
19 | 13 | lmodfgrp 13612 |
. . . . . . 7
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Grp) |
20 | 1, 19 | syl 14 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (Scalar‘𝑊) ∈ Grp) |
21 | | eqid 2189 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
22 | 13, 21, 16 | lmod1cl 13631 |
. . . . . . 7
⊢ (𝑊 ∈ LMod →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
23 | 1, 22 | syl 14 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
24 | 21, 15 | grpinvcl 12992 |
. . . . . 6
⊢
(((Scalar‘𝑊)
∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) |
25 | 20, 23, 24 | syl2anc 411 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) |
26 | 4, 13, 14, 21 | lmodvscl 13621 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))
∧ 𝑌 ∈ (Base‘𝑊)) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌) ∈ (Base‘𝑊)) |
27 | 1, 25, 10, 26 | syl3anc 1249 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌) ∈ (Base‘𝑊)) |
28 | 4, 11 | lmodcom 13649 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌) ∈ (Base‘𝑊)) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)) =
((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) |
29 | 1, 7, 27, 28 | syl3anc 1249 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)) =
((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) |
30 | 13, 21, 11, 14, 5 | lssclg 13680 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))
∧ 𝑌 ∈ 𝑈 ∧ 𝑋 ∈ 𝑈)) →
((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋) ∈ 𝑈) |
31 | 1, 2, 25, 8, 3, 30 | syl113anc 1261 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) →
((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋) ∈ 𝑈) |
32 | 29, 31 | eqeltrd 2266 |
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)) ∈ 𝑈) |
33 | 18, 32 | eqeltrd 2266 |
1
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) ∈ 𝑈) |