Proof of Theorem lssvsubcl
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpll 527 | 
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑊 ∈ LMod) | 
| 2 |   | simplr 528 | 
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | 
| 3 |   | simprl 529 | 
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ 𝑈) | 
| 4 |   | eqid 2196 | 
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) | 
| 5 |   | lssvsubcl.s | 
. . . . 5
⊢ 𝑆 = (LSubSp‘𝑊) | 
| 6 | 4, 5 | lsselg 13917 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) | 
| 7 | 1, 2, 3, 6 | syl3anc 1249 | 
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ (Base‘𝑊)) | 
| 8 |   | simprr 531 | 
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ 𝑈) | 
| 9 | 4, 5 | lsselg 13917 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Base‘𝑊)) | 
| 10 | 1, 2, 8, 9 | syl3anc 1249 | 
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ (Base‘𝑊)) | 
| 11 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝑊) = (+g‘𝑊) | 
| 12 |   | lssvsubcl.m | 
. . . 4
⊢  − =
(-g‘𝑊) | 
| 13 |   | eqid 2196 | 
. . . 4
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) | 
| 14 |   | eqid 2196 | 
. . . 4
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) | 
| 15 |   | eqid 2196 | 
. . . 4
⊢
(invg‘(Scalar‘𝑊)) =
(invg‘(Scalar‘𝑊)) | 
| 16 |   | eqid 2196 | 
. . . 4
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) | 
| 17 | 4, 11, 12, 13, 14, 15, 16 | lmodvsubval2 13898 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑌 ∈ (Base‘𝑊)) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌))) | 
| 18 | 1, 7, 10, 17 | syl3anc 1249 | 
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌))) | 
| 19 | 13 | lmodfgrp 13852 | 
. . . . . . 7
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Grp) | 
| 20 | 1, 19 | syl 14 | 
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (Scalar‘𝑊) ∈ Grp) | 
| 21 |   | eqid 2196 | 
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | 
| 22 | 13, 21, 16 | lmod1cl 13871 | 
. . . . . . 7
⊢ (𝑊 ∈ LMod →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) | 
| 23 | 1, 22 | syl 14 | 
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) | 
| 24 | 21, 15 | grpinvcl 13180 | 
. . . . . 6
⊢
(((Scalar‘𝑊)
∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) | 
| 25 | 20, 23, 24 | syl2anc 411 | 
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) | 
| 26 | 4, 13, 14, 21 | lmodvscl 13861 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))
∧ 𝑌 ∈ (Base‘𝑊)) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌) ∈ (Base‘𝑊)) | 
| 27 | 1, 25, 10, 26 | syl3anc 1249 | 
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌) ∈ (Base‘𝑊)) | 
| 28 | 4, 11 | lmodcom 13889 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌) ∈ (Base‘𝑊)) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)) =
((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) | 
| 29 | 1, 7, 27, 28 | syl3anc 1249 | 
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)) =
((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) | 
| 30 | 13, 21, 11, 14, 5 | lssclg 13920 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))
∧ 𝑌 ∈ 𝑈 ∧ 𝑋 ∈ 𝑈)) →
((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋) ∈ 𝑈) | 
| 31 | 1, 2, 25, 8, 3, 30 | syl113anc 1261 | 
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) →
((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋) ∈ 𝑈) | 
| 32 | 29, 31 | eqeltrd 2273 | 
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋(+g‘𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑌)) ∈ 𝑈) | 
| 33 | 18, 32 | eqeltrd 2273 | 
1
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) ∈ 𝑈) |