![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltle | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
ltle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnsym 8060 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
2 | lenlt 8050 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
3 | 1, 2 | sylibrd 169 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2159 class class class wbr 4017 ℝcr 7827 < clt 8009 ≤ cle 8010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-pre-ltirr 7940 ax-pre-lttrn 7942 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-xp 4646 df-cnv 4648 df-pnf 8011 df-mnf 8012 df-xr 8013 df-ltxr 8014 df-le 8015 |
This theorem is referenced by: ltlei 8076 ltled 8093 ltleap 8606 lep1 8819 lem1 8821 letrp1 8822 ltmul12a 8834 bndndx 9192 nn0ge0 9218 zletric 9314 zlelttric 9315 zltnle 9316 zleloe 9317 ltsubnn0 9337 zdcle 9346 uzind 9381 fnn0ind 9386 eluz2b2 9620 rpge0 9683 zltaddlt1le 10024 difelfznle 10152 elfzouz2 10178 elfzo0le 10202 fzosplitprm1 10251 fzostep1 10254 qletric 10261 qlelttric 10262 qltnle 10263 expgt1 10575 expnlbnd2 10663 faclbnd 10738 caucvgrelemcau 11006 resqrexlemdecn 11038 mulcn2 11337 efcllemp 11683 sin01bnd 11782 cos01bnd 11783 sin01gt0 11786 cos01gt0 11787 absef 11794 efieq1re 11796 nn0o 11929 pythagtriplem12 12292 pythagtriplem13 12293 pythagtriplem14 12294 pythagtriplem16 12296 pclemub 12304 sincosq1lem 14629 tangtx 14642 |
Copyright terms: Public domain | W3C validator |