| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltle | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnsym 8173 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
| 2 | lenlt 8163 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 3 | 1, 2 | sylibrd 169 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4050 ℝcr 7939 < clt 8122 ≤ cle 8123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-pre-ltirr 8052 ax-pre-lttrn 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-xp 4688 df-cnv 4690 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 |
| This theorem is referenced by: ltlei 8189 ltled 8206 ltleap 8720 lep1 8933 lem1 8935 letrp1 8936 ltmul12a 8948 bndndx 9309 nn0ge0 9335 zletric 9431 zlelttric 9432 zltnle 9433 zleloe 9434 ltsubnn0 9455 zdcle 9464 uzind 9499 fnn0ind 9504 eluz2b2 9739 rpge0 9803 zltaddlt1le 10144 difelfznle 10272 elfzouz2 10299 elfzo0le 10326 fzosplitprm1 10380 fzostep1 10383 qletric 10401 qlelttric 10402 qltnle 10403 expgt1 10739 expnlbnd2 10827 faclbnd 10903 swrdsbslen 11137 swrdspsleq 11138 caucvgrelemcau 11361 resqrexlemdecn 11393 mulcn2 11693 efcllemp 12039 sin01bnd 12138 cos01bnd 12139 sin01gt0 12143 cos01gt0 12144 absef 12151 efieq1re 12153 nn0o 12288 pythagtriplem12 12668 pythagtriplem13 12669 pythagtriplem14 12670 pythagtriplem16 12672 pclemub 12680 sincosq1lem 15367 tangtx 15380 |
| Copyright terms: Public domain | W3C validator |