![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltle | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
ltle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnsym 8105 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
2 | lenlt 8095 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
3 | 1, 2 | sylibrd 169 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 < clt 8054 ≤ cle 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 ax-pre-lttrn 7986 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 |
This theorem is referenced by: ltlei 8121 ltled 8138 ltleap 8651 lep1 8864 lem1 8866 letrp1 8867 ltmul12a 8879 bndndx 9239 nn0ge0 9265 zletric 9361 zlelttric 9362 zltnle 9363 zleloe 9364 ltsubnn0 9384 zdcle 9393 uzind 9428 fnn0ind 9433 eluz2b2 9668 rpge0 9732 zltaddlt1le 10073 difelfznle 10201 elfzouz2 10228 elfzo0le 10252 fzosplitprm1 10301 fzostep1 10304 qletric 10311 qlelttric 10312 qltnle 10313 expgt1 10648 expnlbnd2 10736 faclbnd 10812 caucvgrelemcau 11124 resqrexlemdecn 11156 mulcn2 11455 efcllemp 11801 sin01bnd 11900 cos01bnd 11901 sin01gt0 11905 cos01gt0 11906 absef 11913 efieq1re 11915 nn0o 12048 pythagtriplem12 12413 pythagtriplem13 12414 pythagtriplem14 12415 pythagtriplem16 12417 pclemub 12425 sincosq1lem 14960 tangtx 14973 |
Copyright terms: Public domain | W3C validator |