| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltle | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnsym 8228 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
| 2 | lenlt 8218 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 3 | 1, 2 | sylibrd 169 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: ltlei 8244 ltled 8261 ltleap 8775 lep1 8988 lem1 8990 letrp1 8991 ltmul12a 9003 bndndx 9364 nn0ge0 9390 zletric 9486 zlelttric 9487 zltnle 9488 zleloe 9489 ltsubnn0 9510 zdcle 9519 uzind 9554 fnn0ind 9559 eluz2b2 9794 rpge0 9858 zltaddlt1le 10199 difelfznle 10327 elfzouz2 10354 elfzo0le 10381 fzosplitprm1 10435 fzostep1 10438 qletric 10456 qlelttric 10457 qltnle 10458 expgt1 10794 expnlbnd2 10882 faclbnd 10958 swrdsbslen 11193 swrdspsleq 11194 pfxccat3 11261 swrdccat 11262 caucvgrelemcau 11486 resqrexlemdecn 11518 mulcn2 11818 efcllemp 12164 sin01bnd 12263 cos01bnd 12264 sin01gt0 12268 cos01gt0 12269 absef 12276 efieq1re 12278 nn0o 12413 pythagtriplem12 12793 pythagtriplem13 12794 pythagtriplem14 12795 pythagtriplem16 12797 pclemub 12805 sincosq1lem 15493 tangtx 15506 |
| Copyright terms: Public domain | W3C validator |