| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltle | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnsym 8129 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
| 2 | lenlt 8119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 3 | 1, 2 | sylibrd 169 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 < clt 8078 ≤ cle 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: ltlei 8145 ltled 8162 ltleap 8676 lep1 8889 lem1 8891 letrp1 8892 ltmul12a 8904 bndndx 9265 nn0ge0 9291 zletric 9387 zlelttric 9388 zltnle 9389 zleloe 9390 ltsubnn0 9410 zdcle 9419 uzind 9454 fnn0ind 9459 eluz2b2 9694 rpge0 9758 zltaddlt1le 10099 difelfznle 10227 elfzouz2 10254 elfzo0le 10278 fzosplitprm1 10327 fzostep1 10330 qletric 10348 qlelttric 10349 qltnle 10350 expgt1 10686 expnlbnd2 10774 faclbnd 10850 caucvgrelemcau 11162 resqrexlemdecn 11194 mulcn2 11494 efcllemp 11840 sin01bnd 11939 cos01bnd 11940 sin01gt0 11944 cos01gt0 11945 absef 11952 efieq1re 11954 nn0o 12089 pythagtriplem12 12469 pythagtriplem13 12470 pythagtriplem14 12471 pythagtriplem16 12473 pclemub 12481 sincosq1lem 15145 tangtx 15158 |
| Copyright terms: Public domain | W3C validator |