| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltle | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnsym 8131 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
| 2 | lenlt 8121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 3 | 1, 2 | sylibrd 169 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 < clt 8080 ≤ cle 8081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltirr 8010 ax-pre-lttrn 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 |
| This theorem is referenced by: ltlei 8147 ltled 8164 ltleap 8678 lep1 8891 lem1 8893 letrp1 8894 ltmul12a 8906 bndndx 9267 nn0ge0 9293 zletric 9389 zlelttric 9390 zltnle 9391 zleloe 9392 ltsubnn0 9412 zdcle 9421 uzind 9456 fnn0ind 9461 eluz2b2 9696 rpge0 9760 zltaddlt1le 10101 difelfznle 10229 elfzouz2 10256 elfzo0le 10280 fzosplitprm1 10329 fzostep1 10332 qletric 10350 qlelttric 10351 qltnle 10352 expgt1 10688 expnlbnd2 10776 faclbnd 10852 caucvgrelemcau 11164 resqrexlemdecn 11196 mulcn2 11496 efcllemp 11842 sin01bnd 11941 cos01bnd 11942 sin01gt0 11946 cos01gt0 11947 absef 11954 efieq1re 11956 nn0o 12091 pythagtriplem12 12471 pythagtriplem13 12472 pythagtriplem14 12473 pythagtriplem16 12475 pclemub 12483 sincosq1lem 15169 tangtx 15182 |
| Copyright terms: Public domain | W3C validator |