Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltle | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
ltle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnsym 7980 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
2 | lenlt 7970 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
3 | 1, 2 | sylibrd 168 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3981 ℝcr 7748 < clt 7929 ≤ cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltirr 7861 ax-pre-lttrn 7863 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: ltlei 7996 ltled 8013 ltleap 8526 lep1 8736 lem1 8738 letrp1 8739 ltmul12a 8751 bndndx 9109 nn0ge0 9135 zletric 9231 zlelttric 9232 zltnle 9233 zleloe 9234 ltsubnn0 9254 zdcle 9263 uzind 9298 fnn0ind 9303 eluz2b2 9537 rpge0 9598 zltaddlt1le 9939 difelfznle 10066 elfzouz2 10092 elfzo0le 10116 fzosplitprm1 10165 fzostep1 10168 qletric 10175 qlelttric 10176 qltnle 10177 expgt1 10489 expnlbnd2 10576 faclbnd 10650 caucvgrelemcau 10918 resqrexlemdecn 10950 mulcn2 11249 efcllemp 11595 sin01bnd 11694 cos01bnd 11695 sin01gt0 11698 cos01gt0 11699 absef 11706 efieq1re 11708 nn0o 11840 pythagtriplem12 12203 pythagtriplem13 12204 pythagtriplem14 12205 pythagtriplem16 12207 pclemub 12215 sincosq1lem 13346 tangtx 13359 |
Copyright terms: Public domain | W3C validator |