Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltle | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
ltle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnsym 8005 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
2 | lenlt 7995 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
3 | 1, 2 | sylibrd 168 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 < clt 7954 ≤ cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: ltlei 8021 ltled 8038 ltleap 8551 lep1 8761 lem1 8763 letrp1 8764 ltmul12a 8776 bndndx 9134 nn0ge0 9160 zletric 9256 zlelttric 9257 zltnle 9258 zleloe 9259 ltsubnn0 9279 zdcle 9288 uzind 9323 fnn0ind 9328 eluz2b2 9562 rpge0 9623 zltaddlt1le 9964 difelfznle 10091 elfzouz2 10117 elfzo0le 10141 fzosplitprm1 10190 fzostep1 10193 qletric 10200 qlelttric 10201 qltnle 10202 expgt1 10514 expnlbnd2 10601 faclbnd 10675 caucvgrelemcau 10944 resqrexlemdecn 10976 mulcn2 11275 efcllemp 11621 sin01bnd 11720 cos01bnd 11721 sin01gt0 11724 cos01gt0 11725 absef 11732 efieq1re 11734 nn0o 11866 pythagtriplem12 12229 pythagtriplem13 12230 pythagtriplem14 12231 pythagtriplem16 12233 pclemub 12241 sincosq1lem 13540 tangtx 13553 |
Copyright terms: Public domain | W3C validator |