ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttr GIF version

Theorem lttr 7538
Description: Alias for axlttrn 7534, for naming consistency with lttri 7568. New proofs should generally use this instead of ax-pre-lttrn 7438. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
lttr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem lttr
StepHypRef Expression
1 axlttrn 7534 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924  wcel 1438   class class class wbr 3837  cr 7328   < clt 7501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-pre-lttrn 7438
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-xp 4434  df-pnf 7503  df-mnf 7504  df-ltxr 7506
This theorem is referenced by:  ltso  7542  ltleletr  7546  ltnsym  7550  lttri  7568  lttrd  7588  lt2add  7902  lt2sub  7917  mulgt1  8296  recgt1i  8331  recreclt  8333  nnge1  8417  recnz  8809  gtndiv  8811  xrlttr  9234  fzo1fzo0n0  9559  expnbnd  10042  expnlbnd  10043  ltoddhalfle  10986  nno  10999  dvdsnprmd  11200
  Copyright terms: Public domain W3C validator