ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttr GIF version

Theorem lttr 8188
Description: Alias for axlttrn 8183, for naming consistency with lttri 8219. New proofs should generally use this instead of ax-pre-lttrn 8081. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
lttr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem lttr
StepHypRef Expression
1 axlttrn 8183 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983  wcel 2180   class class class wbr 4062  cr 7966   < clt 8149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-pre-lttrn 8081
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-pnf 8151  df-mnf 8152  df-ltxr 8154
This theorem is referenced by:  ltso  8192  ltleletr  8196  ltnsym  8200  lttri  8219  lttrd  8240  lt2add  8560  lt2sub  8575  mulgt1  8978  recgt1i  9013  recreclt  9015  nnge1  9101  recnz  9508  gtndiv  9510  xrlttr  9959  fzo1fzo0n0  10351  seqf1oglem1  10708  expnbnd  10852  expnlbnd  10853  sin01gt0  12239  cos01gt0  12240  p1modz1  12271  ltoddhalfle  12370  nno  12383  dvdsnprmd  12613  reeff1olem  15410  logdivlti  15520  lgsquadlem2  15722
  Copyright terms: Public domain W3C validator