| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttr | GIF version | ||
| Description: Alias for axlttrn 8223, for naming consistency with lttri 8259. New proofs should generally use this instead of ax-pre-lttrn 8121. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttrn 8223 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 < clt 8189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-lttrn 8121 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8191 df-mnf 8192 df-ltxr 8194 |
| This theorem is referenced by: ltso 8232 ltleletr 8236 ltnsym 8240 lttri 8259 lttrd 8280 lt2add 8600 lt2sub 8615 mulgt1 9018 recgt1i 9053 recreclt 9055 nnge1 9141 recnz 9548 gtndiv 9550 xrlttr 9999 fzo1fzo0n0 10391 seqf1oglem1 10749 expnbnd 10893 expnlbnd 10894 sin01gt0 12281 cos01gt0 12282 p1modz1 12313 ltoddhalfle 12412 nno 12425 dvdsnprmd 12655 reeff1olem 15453 logdivlti 15563 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |