Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lttr | GIF version |
Description: Alias for axlttrn 7925, for naming consistency with lttri 7960. New proofs should generally use this instead of ax-pre-lttrn 7825. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 7925 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 ∈ wcel 2125 class class class wbr 3961 ℝcr 7710 < clt 7891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-pre-lttrn 7825 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-pnf 7893 df-mnf 7894 df-ltxr 7896 |
This theorem is referenced by: ltso 7934 ltleletr 7938 ltnsym 7942 lttri 7960 lttrd 7980 lt2add 8299 lt2sub 8314 mulgt1 8713 recgt1i 8748 recreclt 8750 nnge1 8835 recnz 9236 gtndiv 9238 xrlttr 9680 fzo1fzo0n0 10060 expnbnd 10519 expnlbnd 10520 sin01gt0 11635 cos01gt0 11636 ltoddhalfle 11757 nno 11770 dvdsnprmd 11973 reeff1olem 13031 logdivlti 13141 |
Copyright terms: Public domain | W3C validator |