| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttr | GIF version | ||
| Description: Alias for axlttrn 8183, for naming consistency with lttri 8219. New proofs should generally use this instead of ax-pre-lttrn 8081. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| lttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttrn 8183 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 ∈ wcel 2180 class class class wbr 4062 ℝcr 7966 < clt 8149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-pre-lttrn 8081 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-pnf 8151 df-mnf 8152 df-ltxr 8154 |
| This theorem is referenced by: ltso 8192 ltleletr 8196 ltnsym 8200 lttri 8219 lttrd 8240 lt2add 8560 lt2sub 8575 mulgt1 8978 recgt1i 9013 recreclt 9015 nnge1 9101 recnz 9508 gtndiv 9510 xrlttr 9959 fzo1fzo0n0 10351 seqf1oglem1 10708 expnbnd 10852 expnlbnd 10853 sin01gt0 12239 cos01gt0 12240 p1modz1 12271 ltoddhalfle 12370 nno 12383 dvdsnprmd 12613 reeff1olem 15410 logdivlti 15520 lgsquadlem2 15722 |
| Copyright terms: Public domain | W3C validator |