ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttr GIF version

Theorem lttr 8228
Description: Alias for axlttrn 8223, for naming consistency with lttri 8259. New proofs should generally use this instead of ax-pre-lttrn 8121. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
lttr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem lttr
StepHypRef Expression
1 axlttrn 8223 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200   class class class wbr 4083  cr 8006   < clt 8189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-pre-lttrn 8121
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-pnf 8191  df-mnf 8192  df-ltxr 8194
This theorem is referenced by:  ltso  8232  ltleletr  8236  ltnsym  8240  lttri  8259  lttrd  8280  lt2add  8600  lt2sub  8615  mulgt1  9018  recgt1i  9053  recreclt  9055  nnge1  9141  recnz  9548  gtndiv  9550  xrlttr  9999  fzo1fzo0n0  10391  seqf1oglem1  10749  expnbnd  10893  expnlbnd  10894  sin01gt0  12281  cos01gt0  12282  p1modz1  12313  ltoddhalfle  12412  nno  12425  dvdsnprmd  12655  reeff1olem  15453  logdivlti  15563  lgsquadlem2  15765
  Copyright terms: Public domain W3C validator