| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndidcl | GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2204 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 13199 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 13152 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 Basecbs 12774 +gcplusg 12851 0gc0g 13030 Mndcmnd 13190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 |
| This theorem is referenced by: mndbn0 13205 hashfinmndnn 13206 mndpfo 13212 prdsidlem 13221 imasmnd 13227 idmhm 13243 mhmf1o 13244 issubmd 13248 submid 13251 0subm 13258 0mhm 13260 mhmco 13264 mhmeql 13266 gsumvallem2 13267 gsumfzz 13269 gsumfzcl 13273 dfgrp2 13301 grpidcl 13303 mhmid 13393 mhmmnd 13394 mulgnn0cl 13416 mulgnn0z 13427 gsumfzmptfidmadd 13617 srgidcl 13680 srg0cl 13681 ringidcl 13724 |
| Copyright terms: Public domain | W3C validator |