Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mndidcl | GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2170 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 12661 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 12632 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ‘cfv 5198 Basecbs 12416 +gcplusg 12480 0gc0g 12596 Mndcmnd 12652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 |
This theorem is referenced by: mndbn0 12667 hashfinmndnn 12668 mndpfo 12674 idmhm 12692 mhmf1o 12693 issubmd 12696 submid 12699 0subm 12702 0mhm 12704 mhmco 12705 mhmeql 12707 dfgrp2 12732 grpidcl 12734 |
Copyright terms: Public domain | W3C validator |