| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndidcl | GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2229 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 13453 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 13406 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 Basecbs 13027 +gcplusg 13105 0gc0g 13284 Mndcmnd 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 |
| This theorem is referenced by: mndbn0 13459 hashfinmndnn 13460 mndpfo 13466 prdsidlem 13475 imasmnd 13481 idmhm 13497 mhmf1o 13498 issubmd 13502 submid 13505 0subm 13512 0mhm 13514 mhmco 13518 mhmeql 13520 gsumvallem2 13521 gsumfzz 13523 gsumfzcl 13527 dfgrp2 13555 grpidcl 13557 mhmid 13647 mhmmnd 13648 mulgnn0cl 13670 mulgnn0z 13681 gsumfzmptfidmadd 13871 srgidcl 13934 srg0cl 13935 ringidcl 13978 |
| Copyright terms: Public domain | W3C validator |