ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlcpblrng GIF version

Theorem 2idlcpblrng 14079
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
2idlcpblrng.x 𝑋 = (Base‘𝑅)
2idlcpblrng.r 𝐸 = (𝑅 ~QG 𝑆)
2idlcpblrng.i 𝐼 = (2Ideal‘𝑅)
2idlcpblrng.t · = (.r𝑅)
Assertion
Ref Expression
2idlcpblrng ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))

Proof of Theorem 2idlcpblrng
StepHypRef Expression
1 simpl1 1002 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Rng)
2 simpl3 1004 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅))
3 2idlcpblrng.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
4 2idlcpblrng.r . . . . . . . . 9 𝐸 = (𝑅 ~QG 𝑆)
53, 4eqger 13354 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋)
62, 5syl 14 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐸 Er 𝑋)
7 simprl 529 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝐸𝐶)
86, 7ersym 6604 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝐸𝐴)
9 rngabl 13491 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
1093ad2ant1 1020 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel)
11 eqid 2196 . . . . . . . . . . . 12 (LIdeal‘𝑅) = (LIdeal‘𝑅)
12 eqid 2196 . . . . . . . . . . . 12 (oppr𝑅) = (oppr𝑅)
13 eqid 2196 . . . . . . . . . . . 12 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
14 2idlcpblrng.i . . . . . . . . . . . 12 𝐼 = (2Ideal‘𝑅)
1511, 12, 13, 142idlelb 14061 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
1615simplbi 274 . . . . . . . . . 10 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
17163ad2ant2 1021 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (LIdeal‘𝑅))
1817adantr 276 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅))
193, 11lidlss 14032 . . . . . . . 8 (𝑆 ∈ (LIdeal‘𝑅) → 𝑆𝑋)
2018, 19syl 14 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆𝑋)
21 eqid 2196 . . . . . . . 8 (-g𝑅) = (-g𝑅)
223, 21, 4eqgabl 13460 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2310, 20, 22syl2an2r 595 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
248, 23mpbid 147 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆))
2524simp2d 1012 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝑋)
26 simprr 531 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝐸𝐷)
273, 21, 4eqgabl 13460 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2810, 20, 27syl2an2r 595 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2926, 28mpbid 147 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆))
3029simp1d 1011 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝑋)
31 2idlcpblrng.t . . . . 5 · = (.r𝑅)
323, 31rngcl 13500 . . . 4 ((𝑅 ∈ Rng ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
331, 25, 30, 32syl3anc 1249 . . 3 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋)
3424simp1d 1011 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝑋)
3529simp2d 1012 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐷𝑋)
363, 31rngcl 13500 . . . 4 ((𝑅 ∈ Rng ∧ 𝐶𝑋𝐷𝑋) → (𝐶 · 𝐷) ∈ 𝑋)
371, 34, 35, 36syl3anc 1249 . . 3 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋)
38 rnggrp 13494 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
39383ad2ant1 1020 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Grp)
4039adantr 276 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Grp)
413, 31rngcl 13500 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝐶𝑋𝐵𝑋) → (𝐶 · 𝐵) ∈ 𝑋)
421, 34, 30, 41syl3anc 1249 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋)
433, 21grpnnncan2 13229 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4440, 37, 33, 42, 43syl13anc 1251 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
453, 31, 21, 1, 34, 35, 30rngsubdi 13507 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) = ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)))
46 eqid 2196 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
4746subg0cl 13312 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑆)
48473ad2ant3 1022 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (0g𝑅) ∈ 𝑆)
4948adantr 276 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (0g𝑅) ∈ 𝑆)
5029simp3d 1013 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐷(-g𝑅)𝐵) ∈ 𝑆)
5146, 3, 31, 11rnglidlmcl 14036 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (LIdeal‘𝑅) ∧ (0g𝑅) ∈ 𝑆) ∧ (𝐶𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
521, 18, 49, 34, 50, 51syl32anc 1257 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
5345, 52eqeltrrd 2274 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
543, 21grpsubcl 13212 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → (𝐴(-g𝑅)𝐶) ∈ 𝑋)
5540, 25, 34, 54syl3anc 1249 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑋)
56 eqid 2196 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
573, 31, 12, 56opprmulg 13627 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝐵𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑋) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵))
581, 30, 55, 57syl3anc 1249 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵))
593, 31, 21, 1, 25, 34, 30rngsubdir 13508 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴(-g𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
6058, 59eqtrd 2229 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
6112opprrng 13633 . . . . . . . . 9 (𝑅 ∈ Rng → (oppr𝑅) ∈ Rng)
62613ad2ant1 1020 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (oppr𝑅) ∈ Rng)
6362adantr 276 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (oppr𝑅) ∈ Rng)
6415simprbi 275 . . . . . . . . 9 (𝑆𝐼𝑆 ∈ (LIdeal‘(oppr𝑅)))
65643ad2ant2 1021 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
6665adantr 276 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
6712, 46oppr0g 13637 . . . . . . . . 9 (𝑅 ∈ Rng → (0g𝑅) = (0g‘(oppr𝑅)))
681, 67syl 14 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (0g𝑅) = (0g‘(oppr𝑅)))
6968, 49eqeltrrd 2274 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (0g‘(oppr𝑅)) ∈ 𝑆)
7012, 3opprbasg 13631 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑋 = (Base‘(oppr𝑅)))
711, 70syl 14 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑋 = (Base‘(oppr𝑅)))
7230, 71eleqtrd 2275 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵 ∈ (Base‘(oppr𝑅)))
7324simp3d 1013 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑆)
74 eqid 2196 . . . . . . . 8 (0g‘(oppr𝑅)) = (0g‘(oppr𝑅))
75 eqid 2196 . . . . . . . 8 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
7674, 75, 56, 13rnglidlmcl 14036 . . . . . . 7 ((((oppr𝑅) ∈ Rng ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g‘(oppr𝑅)) ∈ 𝑆) ∧ (𝐵 ∈ (Base‘(oppr𝑅)) ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
7763, 66, 69, 72, 73, 76syl32anc 1257 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
7860, 77eqeltrrd 2274 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
7921subgsubcl 13315 . . . . 5 ((𝑆 ∈ (SubGrp‘𝑅) ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
802, 53, 78, 79syl3anc 1249 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
8144, 80eqeltrrd 2274 . . 3 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)
823, 21, 4eqgabl 13460 . . . 4 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
8310, 20, 82syl2an2r 595 . . 3 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
8433, 37, 81, 83mpbir3and 1182 . 2 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))
8584ex 115 1 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922   Er wer 6589  Basecbs 12678  .rcmulr 12756  0gc0g 12927  Grpcgrp 13132  -gcsg 13134  SubGrpcsubg 13297   ~QG cqg 13299  Abelcabl 13415  Rngcrng 13488  opprcoppr 13623  LIdealclidl 14023  2Idealc2idl 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-er 6592  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-eqg 13302  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-oppr 13624  df-lssm 13909  df-sra 13991  df-rgmod 13992  df-lidl 14025  df-2idl 14056
This theorem is referenced by:  2idlcpbl  14080  qus2idrng  14081  qusmulrng  14088
  Copyright terms: Public domain W3C validator