Proof of Theorem 2idlcpblrng
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1002 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Rng) |
| 2 | | simpl3 1004 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 3 | | 2idlcpblrng.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝑅) |
| 4 | | 2idlcpblrng.r |
. . . . . . . . 9
⊢ 𝐸 = (𝑅 ~QG 𝑆) |
| 5 | 3, 4 | eqger 13354 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋) |
| 6 | 2, 5 | syl 14 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐸 Er 𝑋) |
| 7 | | simprl 529 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐴𝐸𝐶) |
| 8 | 6, 7 | ersym 6604 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐶𝐸𝐴) |
| 9 | | rngabl 13491 |
. . . . . . . 8
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| 10 | 9 | 3ad2ant1 1020 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel) |
| 11 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 12 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 13 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(LIdeal‘(oppr‘𝑅)) =
(LIdeal‘(oppr‘𝑅)) |
| 14 | | 2idlcpblrng.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (2Ideal‘𝑅) |
| 15 | 11, 12, 13, 14 | 2idlelb 14061 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅)))) |
| 16 | 15 | simplbi 274 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
| 17 | 16 | 3ad2ant2 1021 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (LIdeal‘𝑅)) |
| 18 | 17 | adantr 276 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅)) |
| 19 | 3, 11 | lidlss 14032 |
. . . . . . . 8
⊢ (𝑆 ∈ (LIdeal‘𝑅) → 𝑆 ⊆ 𝑋) |
| 20 | 18, 19 | syl 14 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ⊆ 𝑋) |
| 21 | | eqid 2196 |
. . . . . . . 8
⊢
(-g‘𝑅) = (-g‘𝑅) |
| 22 | 3, 21, 4 | eqgabl 13460 |
. . . . . . 7
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐶𝐸𝐴 ↔ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆))) |
| 23 | 10, 20, 22 | syl2an2r 595 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆))) |
| 24 | 8, 23 | mpbid 147 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆)) |
| 25 | 24 | simp2d 1012 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐴 ∈ 𝑋) |
| 26 | | simprr 531 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵𝐸𝐷) |
| 27 | 3, 21, 4 | eqgabl 13460 |
. . . . . . 7
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐵𝐸𝐷 ↔ (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆))) |
| 28 | 10, 20, 27 | syl2an2r 595 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆))) |
| 29 | 26, 28 | mpbid 147 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆)) |
| 30 | 29 | simp1d 1011 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵 ∈ 𝑋) |
| 31 | | 2idlcpblrng.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
| 32 | 3, 31 | rngcl 13500 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 · 𝐵) ∈ 𝑋) |
| 33 | 1, 25, 30, 32 | syl3anc 1249 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋) |
| 34 | 24 | simp1d 1011 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐶 ∈ 𝑋) |
| 35 | 29 | simp2d 1012 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐷 ∈ 𝑋) |
| 36 | 3, 31 | rngcl 13500 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶 · 𝐷) ∈ 𝑋) |
| 37 | 1, 34, 35, 36 | syl3anc 1249 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋) |
| 38 | | rnggrp 13494 |
. . . . . . 7
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| 39 | 38 | 3ad2ant1 1020 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Grp) |
| 40 | 39 | adantr 276 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Grp) |
| 41 | 3, 31 | rngcl 13500 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐶 · 𝐵) ∈ 𝑋) |
| 42 | 1, 34, 30, 41 | syl3anc 1249 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋) |
| 43 | 3, 21 | grpnnncan2 13229 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵))) |
| 44 | 40, 37, 33, 42, 43 | syl13anc 1251 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵))) |
| 45 | 3, 31, 21, 1, 34, 35, 30 | rngsubdi 13507 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))) |
| 46 | | eqid 2196 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 47 | 46 | subg0cl 13312 |
. . . . . . . . 9
⊢ (𝑆 ∈ (SubGrp‘𝑅) →
(0g‘𝑅)
∈ 𝑆) |
| 48 | 47 | 3ad2ant3 1022 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (0g‘𝑅) ∈ 𝑆) |
| 49 | 48 | adantr 276 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (0g‘𝑅) ∈ 𝑆) |
| 50 | 29 | simp3d 1013 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐷(-g‘𝑅)𝐵) ∈ 𝑆) |
| 51 | 46, 3, 31, 11 | rnglidlmcl 14036 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (LIdeal‘𝑅) ∧
(0g‘𝑅)
∈ 𝑆) ∧ (𝐶 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) ∈ 𝑆) |
| 52 | 1, 18, 49, 34, 50, 51 | syl32anc 1257 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) ∈ 𝑆) |
| 53 | 45, 52 | eqeltrrd 2274 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) |
| 54 | 3, 21 | grpsubcl 13212 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴(-g‘𝑅)𝐶) ∈ 𝑋) |
| 55 | 40, 25, 34, 54 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴(-g‘𝑅)𝐶) ∈ 𝑋) |
| 56 | | eqid 2196 |
. . . . . . . . 9
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
| 57 | 3, 31, 12, 56 | opprmulg 13627 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝐵 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑋) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴(-g‘𝑅)𝐶) · 𝐵)) |
| 58 | 1, 30, 55, 57 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴(-g‘𝑅)𝐶) · 𝐵)) |
| 59 | 3, 31, 21, 1, 25, 34, 30 | rngsubdir 13508 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴(-g‘𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) |
| 60 | 58, 59 | eqtrd 2229 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴 · 𝐵)(-g‘𝑅)(𝐶
· 𝐵))) |
| 61 | 12 | opprrng 13633 |
. . . . . . . . 9
⊢ (𝑅 ∈ Rng →
(oppr‘𝑅) ∈ Rng) |
| 62 | 61 | 3ad2ant1 1020 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) →
(oppr‘𝑅) ∈ Rng) |
| 63 | 62 | adantr 276 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) →
(oppr‘𝑅) ∈ Rng) |
| 64 | 15 | simprbi 275 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
| 65 | 64 | 3ad2ant2 1021 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
| 66 | 65 | adantr 276 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
| 67 | 12, 46 | oppr0g 13637 |
. . . . . . . . 9
⊢ (𝑅 ∈ Rng →
(0g‘𝑅) =
(0g‘(oppr‘𝑅))) |
| 68 | 1, 67 | syl 14 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (0g‘𝑅) =
(0g‘(oppr‘𝑅))) |
| 69 | 68, 49 | eqeltrrd 2274 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) →
(0g‘(oppr‘𝑅)) ∈ 𝑆) |
| 70 | 12, 3 | opprbasg 13631 |
. . . . . . . . 9
⊢ (𝑅 ∈ Rng → 𝑋 =
(Base‘(oppr‘𝑅))) |
| 71 | 1, 70 | syl 14 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑋 =
(Base‘(oppr‘𝑅))) |
| 72 | 30, 71 | eleqtrd 2275 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵 ∈
(Base‘(oppr‘𝑅))) |
| 73 | 24 | simp3d 1013 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴(-g‘𝑅)𝐶) ∈ 𝑆) |
| 74 | | eqid 2196 |
. . . . . . . 8
⊢
(0g‘(oppr‘𝑅)) =
(0g‘(oppr‘𝑅)) |
| 75 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘(oppr‘𝑅)) =
(Base‘(oppr‘𝑅)) |
| 76 | 74, 75, 56, 13 | rnglidlmcl 14036 |
. . . . . . 7
⊢
((((oppr‘𝑅) ∈ Rng ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅)) ∧
(0g‘(oppr‘𝑅)) ∈ 𝑆) ∧ (𝐵 ∈
(Base‘(oppr‘𝑅)) ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
∈ 𝑆) |
| 77 | 63, 66, 69, 72, 73, 76 | syl32anc 1257 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
∈ 𝑆) |
| 78 | 60, 77 | eqeltrrd 2274 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) |
| 79 | 21 | subgsubcl 13315 |
. . . . 5
⊢ ((𝑆 ∈ (SubGrp‘𝑅) ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) ∈ 𝑆) |
| 80 | 2, 53, 78, 79 | syl3anc 1249 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) ∈ 𝑆) |
| 81 | 44, 80 | eqeltrrd 2274 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆) |
| 82 | 3, 21, 4 | eqgabl 13460 |
. . . 4
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆))) |
| 83 | 10, 20, 82 | syl2an2r 595 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆))) |
| 84 | 33, 37, 81, 83 | mpbir3and 1182 |
. 2
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)) |
| 85 | 84 | ex 115 |
1
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) |