ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlcpblrng GIF version

Theorem 2idlcpblrng 14329
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
2idlcpblrng.x 𝑋 = (Base‘𝑅)
2idlcpblrng.r 𝐸 = (𝑅 ~QG 𝑆)
2idlcpblrng.i 𝐼 = (2Ideal‘𝑅)
2idlcpblrng.t · = (.r𝑅)
Assertion
Ref Expression
2idlcpblrng ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))

Proof of Theorem 2idlcpblrng
StepHypRef Expression
1 simpl1 1003 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Rng)
2 simpl3 1005 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅))
3 2idlcpblrng.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
4 2idlcpblrng.r . . . . . . . . 9 𝐸 = (𝑅 ~QG 𝑆)
53, 4eqger 13604 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋)
62, 5syl 14 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐸 Er 𝑋)
7 simprl 529 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝐸𝐶)
86, 7ersym 6639 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝐸𝐴)
9 rngabl 13741 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
1093ad2ant1 1021 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel)
11 eqid 2206 . . . . . . . . . . . 12 (LIdeal‘𝑅) = (LIdeal‘𝑅)
12 eqid 2206 . . . . . . . . . . . 12 (oppr𝑅) = (oppr𝑅)
13 eqid 2206 . . . . . . . . . . . 12 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
14 2idlcpblrng.i . . . . . . . . . . . 12 𝐼 = (2Ideal‘𝑅)
1511, 12, 13, 142idlelb 14311 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
1615simplbi 274 . . . . . . . . . 10 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
17163ad2ant2 1022 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (LIdeal‘𝑅))
1817adantr 276 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅))
193, 11lidlss 14282 . . . . . . . 8 (𝑆 ∈ (LIdeal‘𝑅) → 𝑆𝑋)
2018, 19syl 14 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆𝑋)
21 eqid 2206 . . . . . . . 8 (-g𝑅) = (-g𝑅)
223, 21, 4eqgabl 13710 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2310, 20, 22syl2an2r 595 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
248, 23mpbid 147 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆))
2524simp2d 1013 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝑋)
26 simprr 531 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝐸𝐷)
273, 21, 4eqgabl 13710 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2810, 20, 27syl2an2r 595 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2926, 28mpbid 147 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆))
3029simp1d 1012 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝑋)
31 2idlcpblrng.t . . . . 5 · = (.r𝑅)
323, 31rngcl 13750 . . . 4 ((𝑅 ∈ Rng ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
331, 25, 30, 32syl3anc 1250 . . 3 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋)
3424simp1d 1012 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝑋)
3529simp2d 1013 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐷𝑋)
363, 31rngcl 13750 . . . 4 ((𝑅 ∈ Rng ∧ 𝐶𝑋𝐷𝑋) → (𝐶 · 𝐷) ∈ 𝑋)
371, 34, 35, 36syl3anc 1250 . . 3 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋)
38 rnggrp 13744 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
39383ad2ant1 1021 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Grp)
4039adantr 276 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Grp)
413, 31rngcl 13750 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝐶𝑋𝐵𝑋) → (𝐶 · 𝐵) ∈ 𝑋)
421, 34, 30, 41syl3anc 1250 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋)
433, 21grpnnncan2 13473 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4440, 37, 33, 42, 43syl13anc 1252 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
453, 31, 21, 1, 34, 35, 30rngsubdi 13757 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) = ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)))
46 eqid 2206 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
4746subg0cl 13562 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑆)
48473ad2ant3 1023 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (0g𝑅) ∈ 𝑆)
4948adantr 276 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (0g𝑅) ∈ 𝑆)
5029simp3d 1014 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐷(-g𝑅)𝐵) ∈ 𝑆)
5146, 3, 31, 11rnglidlmcl 14286 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (LIdeal‘𝑅) ∧ (0g𝑅) ∈ 𝑆) ∧ (𝐶𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
521, 18, 49, 34, 50, 51syl32anc 1258 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
5345, 52eqeltrrd 2284 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
543, 21grpsubcl 13456 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → (𝐴(-g𝑅)𝐶) ∈ 𝑋)
5540, 25, 34, 54syl3anc 1250 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑋)
56 eqid 2206 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
573, 31, 12, 56opprmulg 13877 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝐵𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑋) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵))
581, 30, 55, 57syl3anc 1250 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵))
593, 31, 21, 1, 25, 34, 30rngsubdir 13758 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴(-g𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
6058, 59eqtrd 2239 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
6112opprrng 13883 . . . . . . . . 9 (𝑅 ∈ Rng → (oppr𝑅) ∈ Rng)
62613ad2ant1 1021 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (oppr𝑅) ∈ Rng)
6362adantr 276 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (oppr𝑅) ∈ Rng)
6415simprbi 275 . . . . . . . . 9 (𝑆𝐼𝑆 ∈ (LIdeal‘(oppr𝑅)))
65643ad2ant2 1022 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
6665adantr 276 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
6712, 46oppr0g 13887 . . . . . . . . 9 (𝑅 ∈ Rng → (0g𝑅) = (0g‘(oppr𝑅)))
681, 67syl 14 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (0g𝑅) = (0g‘(oppr𝑅)))
6968, 49eqeltrrd 2284 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (0g‘(oppr𝑅)) ∈ 𝑆)
7012, 3opprbasg 13881 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑋 = (Base‘(oppr𝑅)))
711, 70syl 14 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑋 = (Base‘(oppr𝑅)))
7230, 71eleqtrd 2285 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵 ∈ (Base‘(oppr𝑅)))
7324simp3d 1014 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑆)
74 eqid 2206 . . . . . . . 8 (0g‘(oppr𝑅)) = (0g‘(oppr𝑅))
75 eqid 2206 . . . . . . . 8 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
7674, 75, 56, 13rnglidlmcl 14286 . . . . . . 7 ((((oppr𝑅) ∈ Rng ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g‘(oppr𝑅)) ∈ 𝑆) ∧ (𝐵 ∈ (Base‘(oppr𝑅)) ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
7763, 66, 69, 72, 73, 76syl32anc 1258 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
7860, 77eqeltrrd 2284 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
7921subgsubcl 13565 . . . . 5 ((𝑆 ∈ (SubGrp‘𝑅) ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
802, 53, 78, 79syl3anc 1250 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
8144, 80eqeltrrd 2284 . . 3 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)
823, 21, 4eqgabl 13710 . . . 4 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
8310, 20, 82syl2an2r 595 . . 3 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
8433, 37, 81, 83mpbir3and 1183 . 2 (((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))
8584ex 115 1 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wss 3167   class class class wbr 4047  cfv 5276  (class class class)co 5951   Er wer 6624  Basecbs 12876  .rcmulr 12954  0gc0g 13132  Grpcgrp 13376  -gcsg 13378  SubGrpcsubg 13547   ~QG cqg 13549  Abelcabl 13665  Rngcrng 13738  opprcoppr 13873  LIdealclidl 14273  2Idealc2idl 14305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-tpos 6338  df-er 6627  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-sbg 13381  df-subg 13550  df-eqg 13552  df-cmn 13666  df-abl 13667  df-mgp 13727  df-rng 13739  df-oppr 13874  df-lssm 14159  df-sra 14241  df-rgmod 14242  df-lidl 14275  df-2idl 14306
This theorem is referenced by:  2idlcpbl  14330  qus2idrng  14331  qusmulrng  14338
  Copyright terms: Public domain W3C validator