| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addmodid | GIF version | ||
| Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| addmodid | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1022 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℕ) | |
| 2 | 1 | nncnd 9132 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℂ) |
| 3 | 2 | mulid2d 8173 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (1 · 𝑀) = 𝑀) |
| 4 | 3 | eqcomd 2235 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 = (1 · 𝑀)) |
| 5 | 4 | oveq1d 6022 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝑀 + 𝐴) = ((1 · 𝑀) + 𝐴)) |
| 6 | 5 | oveq1d 6022 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = (((1 · 𝑀) + 𝐴) mod 𝑀)) |
| 7 | 1zzd 9481 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 1 ∈ ℤ) | |
| 8 | nnq 9836 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
| 9 | 8 | 3ad2ant2 1043 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℚ) |
| 10 | simp1 1021 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℕ0) | |
| 11 | 10 | nn0zd 9575 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℤ) |
| 12 | zq 9829 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℚ) |
| 14 | nn0re 9386 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 15 | 14 | 3ad2ant1 1042 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ) |
| 16 | 10 | nn0ge0d 9433 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 0 ≤ 𝐴) |
| 17 | simp3 1023 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 < 𝑀) | |
| 18 | 0re 8154 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 19 | nnre 9125 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
| 20 | 19 | rexrd 8204 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ*) |
| 21 | 20 | 3ad2ant2 1043 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℝ*) |
| 22 | elico2 10141 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) | |
| 23 | 18, 21, 22 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
| 24 | 15, 16, 17, 23 | mpbir3and 1204 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ (0[,)𝑀)) |
| 25 | mulqaddmodid 10594 | . . 3 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) | |
| 26 | 7, 9, 13, 24, 25 | syl22anc 1272 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| 27 | 6, 26 | eqtrd 2262 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℝcr 8006 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 ℝ*cxr 8188 < clt 8189 ≤ cle 8190 ℕcn 9118 ℕ0cn0 9377 ℤcz 9454 ℚcq 9822 [,)cico 10094 mod cmo 10552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-q 9823 df-rp 9858 df-ico 10098 df-fl 10498 df-mod 10553 |
| This theorem is referenced by: addmodidr 10603 |
| Copyright terms: Public domain | W3C validator |