ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addmodid GIF version

Theorem addmodid 10561
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
addmodid ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)

Proof of Theorem addmodid
StepHypRef Expression
1 simp2 1003 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℕ)
21nncnd 9092 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℂ)
32mulid2d 8133 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (1 · 𝑀) = 𝑀)
43eqcomd 2215 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 = (1 · 𝑀))
54oveq1d 5989 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝑀 + 𝐴) = ((1 · 𝑀) + 𝐴))
65oveq1d 5989 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = (((1 · 𝑀) + 𝐴) mod 𝑀))
7 1zzd 9441 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 1 ∈ ℤ)
8 nnq 9796 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
983ad2ant2 1024 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℚ)
10 simp1 1002 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℕ0)
1110nn0zd 9535 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℤ)
12 zq 9789 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
1311, 12syl 14 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℚ)
14 nn0re 9346 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
15143ad2ant1 1023 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ)
1610nn0ge0d 9393 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 0 ≤ 𝐴)
17 simp3 1004 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 < 𝑀)
18 0re 8114 . . . . 5 0 ∈ ℝ
19 nnre 9085 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
2019rexrd 8164 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ*)
21203ad2ant2 1024 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℝ*)
22 elico2 10101 . . . . 5 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
2318, 21, 22sylancr 414 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
2415, 16, 17, 23mpbir3and 1185 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ (0[,)𝑀))
25 mulqaddmodid 10553 . . 3 (((1 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
267, 9, 13, 24, 25syl22anc 1253 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
276, 26eqtrd 2242 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062  (class class class)co 5974  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  *cxr 8148   < clt 8149  cle 8150  cn 9078  0cn0 9337  cz 9414  cq 9782  [,)cico 10054   mod cmo 10511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-ico 10058  df-fl 10457  df-mod 10512
This theorem is referenced by:  addmodidr  10562
  Copyright terms: Public domain W3C validator