ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlsubg GIF version

Theorem lidlsubg 13763
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
lidlcl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
lidlsubg ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))

Proof of Theorem lidlsubg
Dummy variables 𝑥 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 lidlcl.u . . . 4 𝑈 = (LIdeal‘𝑅)
31, 2lidlss 13753 . . 3 (𝐼𝑈𝐼 ⊆ (Base‘𝑅))
43adantl 277 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ⊆ (Base‘𝑅))
5 eqid 2189 . . . 4 (0g𝑅) = (0g𝑅)
62, 5lidl0cl 13760 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
7 elex2 2768 . . 3 ((0g𝑅) ∈ 𝐼 → ∃𝑗 𝑗𝐼)
86, 7syl 14 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∃𝑗 𝑗𝐼)
9 eqid 2189 . . . . . . 7 (+g𝑅) = (+g𝑅)
102, 9lidlacl 13761 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑥𝐼𝑦𝐼)) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
1110anassrs 400 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
1211ralrimiva 2563 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥𝐼) → ∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼)
13 eqid 2189 . . . . . 6 (invg𝑅) = (invg𝑅)
142, 13lidlnegcl 13762 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥𝐼) → ((invg𝑅)‘𝑥) ∈ 𝐼)
15143expa 1205 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥𝐼) → ((invg𝑅)‘𝑥) ∈ 𝐼)
1612, 15jca 306 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥𝐼) → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
1716ralrimiva 2563 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
18 ringgrp 13316 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1918adantr 276 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝑅 ∈ Grp)
201, 9, 13issubg2m 13094 . . 3 (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
2119, 20syl 14 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
224, 8, 17, 21mpbir3and 1182 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2160  wral 2468  wss 3144  cfv 5231  (class class class)co 5891  Basecbs 12480  +gcplusg 12555  0gc0g 12727  Grpcgrp 12911  invgcminusg 12912  SubGrpcsubg 13072  Ringcrg 13311  LIdealclidl 13744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-pre-ltirr 7941  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-ltxr 8015  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-5 8999  df-6 9000  df-7 9001  df-8 9002  df-ndx 12483  df-slot 12484  df-base 12486  df-sets 12487  df-iress 12488  df-plusg 12568  df-mulr 12569  df-sca 12571  df-vsca 12572  df-ip 12573  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915  df-sbg 12916  df-subg 13075  df-mgp 13236  df-ur 13275  df-ring 13313  df-subrg 13527  df-lmod 13566  df-lssm 13630  df-sra 13712  df-rgmod 13713  df-lidl 13746
This theorem is referenced by:  lidlsubcl  13764  dflidl2  13765  df2idl2  13785  2idlcpbl  13800  qus1  13802  qusmul2  13804  quscrng  13808
  Copyright terms: Public domain W3C validator