| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlsubg | GIF version | ||
| Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| Ref | Expression |
|---|---|
| lidlsubg | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | lidlcl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 3 | 1, 2 | lidlss 14448 | . . 3 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
| 5 | eqid 2229 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | 2, 5 | lidl0cl 14455 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
| 7 | elex2 2816 | . . 3 ⊢ ((0g‘𝑅) ∈ 𝐼 → ∃𝑗 𝑗 ∈ 𝐼) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∃𝑗 𝑗 ∈ 𝐼) |
| 9 | eqid 2229 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 10 | 2, 9 | lidlacl 14456 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
| 11 | 10 | anassrs 400 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
| 12 | 11 | ralrimiva 2603 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → ∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
| 13 | eqid 2229 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 14 | 2, 13 | lidlnegcl 14457 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘𝑥) ∈ 𝐼) |
| 15 | 14 | 3expa 1227 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘𝑥) ∈ 𝐼) |
| 16 | 12, 15 | jca 306 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)) |
| 17 | 16 | ralrimiva 2603 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)) |
| 18 | ringgrp 13972 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 19 | 18 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Grp) |
| 20 | 1, 9, 13 | issubg2m 13734 | . . 3 ⊢ (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)))) |
| 21 | 19, 20 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)))) |
| 22 | 4, 8, 17, 21 | mpbir3and 1204 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 0gc0g 13297 Grpcgrp 13541 invgcminusg 13542 SubGrpcsubg 13712 Ringcrg 13967 LIdealclidl 14439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-sbg 13546 df-subg 13715 df-mgp 13892 df-ur 13931 df-ring 13969 df-subrg 14191 df-lmod 14261 df-lssm 14325 df-sra 14407 df-rgmod 14408 df-lidl 14441 |
| This theorem is referenced by: lidlsubcl 14459 dflidl2 14460 df2idl2 14481 2idlcpbl 14496 qus1 14498 qusrhm 14500 qusmul2 14501 quscrng 14505 zndvds 14621 |
| Copyright terms: Public domain | W3C validator |