![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlsubg | GIF version |
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
lidlsubg | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | lidlcl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | 1, 2 | lidlss 13975 | . . 3 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
4 | 3 | adantl 277 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
5 | eqid 2193 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | 2, 5 | lidl0cl 13982 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
7 | elex2 2776 | . . 3 ⊢ ((0g‘𝑅) ∈ 𝐼 → ∃𝑗 𝑗 ∈ 𝐼) | |
8 | 6, 7 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∃𝑗 𝑗 ∈ 𝐼) |
9 | eqid 2193 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
10 | 2, 9 | lidlacl 13983 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
11 | 10 | anassrs 400 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
12 | 11 | ralrimiva 2567 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → ∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
13 | eqid 2193 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
14 | 2, 13 | lidlnegcl 13984 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘𝑥) ∈ 𝐼) |
15 | 14 | 3expa 1205 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘𝑥) ∈ 𝐼) |
16 | 12, 15 | jca 306 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)) |
17 | 16 | ralrimiva 2567 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)) |
18 | ringgrp 13500 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
19 | 18 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Grp) |
20 | 1, 9, 13 | issubg2m 13262 | . . 3 ⊢ (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)))) |
21 | 19, 20 | syl 14 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)))) |
22 | 4, 8, 17, 21 | mpbir3and 1182 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 0gc0g 12870 Grpcgrp 13075 invgcminusg 13076 SubGrpcsubg 13240 Ringcrg 13495 LIdealclidl 13966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-subg 13243 df-mgp 13420 df-ur 13459 df-ring 13497 df-subrg 13718 df-lmod 13788 df-lssm 13852 df-sra 13934 df-rgmod 13935 df-lidl 13968 |
This theorem is referenced by: lidlsubcl 13986 dflidl2 13987 df2idl2 14008 2idlcpbl 14023 qus1 14025 qusrhm 14027 qusmul2 14028 quscrng 14032 zndvds 14148 |
Copyright terms: Public domain | W3C validator |