![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlsubg | GIF version |
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
lidlcl.u | β’ π = (LIdealβπ ) |
Ref | Expression |
---|---|
lidlsubg | β’ ((π β Ring β§ πΌ β π) β πΌ β (SubGrpβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
2 | lidlcl.u | . . . 4 β’ π = (LIdealβπ ) | |
3 | 1, 2 | lidlss 13760 | . . 3 β’ (πΌ β π β πΌ β (Baseβπ )) |
4 | 3 | adantl 277 | . 2 β’ ((π β Ring β§ πΌ β π) β πΌ β (Baseβπ )) |
5 | eqid 2189 | . . . 4 β’ (0gβπ ) = (0gβπ ) | |
6 | 2, 5 | lidl0cl 13767 | . . 3 β’ ((π β Ring β§ πΌ β π) β (0gβπ ) β πΌ) |
7 | elex2 2768 | . . 3 β’ ((0gβπ ) β πΌ β βπ π β πΌ) | |
8 | 6, 7 | syl 14 | . 2 β’ ((π β Ring β§ πΌ β π) β βπ π β πΌ) |
9 | eqid 2189 | . . . . . . 7 β’ (+gβπ ) = (+gβπ ) | |
10 | 2, 9 | lidlacl 13768 | . . . . . 6 β’ (((π β Ring β§ πΌ β π) β§ (π₯ β πΌ β§ π¦ β πΌ)) β (π₯(+gβπ )π¦) β πΌ) |
11 | 10 | anassrs 400 | . . . . 5 β’ ((((π β Ring β§ πΌ β π) β§ π₯ β πΌ) β§ π¦ β πΌ) β (π₯(+gβπ )π¦) β πΌ) |
12 | 11 | ralrimiva 2563 | . . . 4 β’ (((π β Ring β§ πΌ β π) β§ π₯ β πΌ) β βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ) |
13 | eqid 2189 | . . . . . 6 β’ (invgβπ ) = (invgβπ ) | |
14 | 2, 13 | lidlnegcl 13769 | . . . . 5 β’ ((π β Ring β§ πΌ β π β§ π₯ β πΌ) β ((invgβπ )βπ₯) β πΌ) |
15 | 14 | 3expa 1205 | . . . 4 β’ (((π β Ring β§ πΌ β π) β§ π₯ β πΌ) β ((invgβπ )βπ₯) β πΌ) |
16 | 12, 15 | jca 306 | . . 3 β’ (((π β Ring β§ πΌ β π) β§ π₯ β πΌ) β (βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ β§ ((invgβπ )βπ₯) β πΌ)) |
17 | 16 | ralrimiva 2563 | . 2 β’ ((π β Ring β§ πΌ β π) β βπ₯ β πΌ (βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ β§ ((invgβπ )βπ₯) β πΌ)) |
18 | ringgrp 13323 | . . . 4 β’ (π β Ring β π β Grp) | |
19 | 18 | adantr 276 | . . 3 β’ ((π β Ring β§ πΌ β π) β π β Grp) |
20 | 1, 9, 13 | issubg2m 13101 | . . 3 β’ (π β Grp β (πΌ β (SubGrpβπ ) β (πΌ β (Baseβπ ) β§ βπ π β πΌ β§ βπ₯ β πΌ (βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ β§ ((invgβπ )βπ₯) β πΌ)))) |
21 | 19, 20 | syl 14 | . 2 β’ ((π β Ring β§ πΌ β π) β (πΌ β (SubGrpβπ ) β (πΌ β (Baseβπ ) β§ βπ π β πΌ β§ βπ₯ β πΌ (βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ β§ ((invgβπ )βπ₯) β πΌ)))) |
22 | 4, 8, 17, 21 | mpbir3and 1182 | 1 β’ ((π β Ring β§ πΌ β π) β πΌ β (SubGrpβπ )) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 β§ w3a 980 = wceq 1364 βwex 1503 β wcel 2160 βwral 2468 β wss 3144 βcfv 5232 (class class class)co 5892 Basecbs 12487 +gcplusg 12562 0gc0g 12734 Grpcgrp 12918 invgcminusg 12919 SubGrpcsubg 13079 Ringcrg 13318 LIdealclidl 13751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7922 ax-resscn 7923 ax-1cn 7924 ax-1re 7925 ax-icn 7926 ax-addcl 7927 ax-addrcl 7928 ax-mulcl 7929 ax-addcom 7931 ax-addass 7933 ax-i2m1 7936 ax-0lt1 7937 ax-0id 7939 ax-rnegex 7940 ax-pre-ltirr 7943 ax-pre-lttrn 7945 ax-pre-ltadd 7947 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-pnf 8014 df-mnf 8015 df-ltxr 8017 df-inn 8940 df-2 8998 df-3 8999 df-4 9000 df-5 9001 df-6 9002 df-7 9003 df-8 9004 df-ndx 12490 df-slot 12491 df-base 12493 df-sets 12494 df-iress 12495 df-plusg 12575 df-mulr 12576 df-sca 12578 df-vsca 12579 df-ip 12580 df-0g 12736 df-mgm 12805 df-sgrp 12838 df-mnd 12851 df-grp 12921 df-minusg 12922 df-sbg 12923 df-subg 13082 df-mgp 13243 df-ur 13282 df-ring 13320 df-subrg 13534 df-lmod 13573 df-lssm 13637 df-sra 13719 df-rgmod 13720 df-lidl 13753 |
This theorem is referenced by: lidlsubcl 13771 dflidl2 13772 df2idl2 13792 2idlcpbl 13807 qus1 13809 qusmul2 13811 quscrng 13815 |
Copyright terms: Public domain | W3C validator |