ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubm GIF version

Theorem subsubm 12958
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypothesis
Ref Expression
subsubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubm (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubm
StepHypRef Expression
1 eqid 2189 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
21submss 12951 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
32adantl 277 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
4 subsubm.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
54submbas 12956 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
65adantr 276 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 = (Base‘𝐻))
73, 6sseqtrrd 3209 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴𝑆)
8 eqid 2189 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
98submss 12951 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
109adantr 276 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
117, 10sstrd 3180 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
12 eqid 2189 . . . . . . 7 (0g𝐺) = (0g𝐺)
134, 12subm0 12957 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1413adantr 276 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) = (0g𝐻))
15 eqid 2189 . . . . . . 7 (0g𝐻) = (0g𝐻)
1615subm0cl 12953 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (0g𝐻) ∈ 𝐴)
1716adantl 277 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐻) ∈ 𝐴)
1814, 17eqeltrd 2266 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) ∈ 𝐴)
194oveq1i 5910 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
20 submrcl 12946 . . . . . . . . 9 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2120adantr 276 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → 𝐺 ∈ Mnd)
22 ressabsg 12599 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆𝐺 ∈ Mnd) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
2321, 22mpd3an3 1349 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
2419, 23eqtrid 2234 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
257, 24syldan 282 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
26 eqid 2189 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
2726submmnd 12955 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (𝐻s 𝐴) ∈ Mnd)
2827adantl 277 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) ∈ Mnd)
2925, 28eqeltrrd 2267 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐺s 𝐴) ∈ Mnd)
3020adantr 276 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐺 ∈ Mnd)
31 eqid 2189 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
328, 12, 31issubm2 12948 . . . . 5 (𝐺 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3330, 32syl 14 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3411, 18, 29, 33mpbir3and 1182 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ∈ (SubMnd‘𝐺))
3534, 7jca 306 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆))
36 simprr 531 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
375adantr 276 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
3836, 37sseqtrd 3208 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3913adantr 276 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) = (0g𝐻))
4012subm0cl 12953 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝐴)
4140ad2antrl 490 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) ∈ 𝐴)
4239, 41eqeltrrd 2267 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐻) ∈ 𝐴)
4324adantrl 478 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
4431submmnd 12955 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (𝐺s 𝐴) ∈ Mnd)
4544ad2antrl 490 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Mnd)
4643, 45eqeltrd 2266 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Mnd)
474submmnd 12955 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
4847adantr 276 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Mnd)
491, 15, 26issubm2 12948 . . . 4 (𝐻 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
5048, 49syl 14 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
5138, 42, 46, 50mpbir3and 1182 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubMnd‘𝐻))
5235, 51impbida 596 1 (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wss 3144  cfv 5238  (class class class)co 5900  Basecbs 12523  s cress 12524  0gc0g 12772  Mndcmnd 12900  SubMndcsubmnd 12933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-submnd 12935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator