Proof of Theorem subsubm
Step | Hyp | Ref
| Expression |
1 | | eqid 2189 |
. . . . . . . 8
⊢
(Base‘𝐻) =
(Base‘𝐻) |
2 | 1 | submss 12951 |
. . . . . . 7
⊢ (𝐴 ∈ (SubMnd‘𝐻) → 𝐴 ⊆ (Base‘𝐻)) |
3 | 2 | adantl 277 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐻)) |
4 | | subsubm.h |
. . . . . . . 8
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
5 | 4 | submbas 12956 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻)) |
6 | 5 | adantr 276 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 = (Base‘𝐻)) |
7 | 3, 6 | sseqtrrd 3209 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ 𝑆) |
8 | | eqid 2189 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
9 | 8 | submss 12951 |
. . . . . 6
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
10 | 9 | adantr 276 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 ⊆ (Base‘𝐺)) |
11 | 7, 10 | sstrd 3180 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐺)) |
12 | | eqid 2189 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
13 | 4, 12 | subm0 12957 |
. . . . . 6
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
14 | 13 | adantr 276 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g‘𝐺) = (0g‘𝐻)) |
15 | | eqid 2189 |
. . . . . . 7
⊢
(0g‘𝐻) = (0g‘𝐻) |
16 | 15 | subm0cl 12953 |
. . . . . 6
⊢ (𝐴 ∈ (SubMnd‘𝐻) →
(0g‘𝐻)
∈ 𝐴) |
17 | 16 | adantl 277 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g‘𝐻) ∈ 𝐴) |
18 | 14, 17 | eqeltrd 2266 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g‘𝐺) ∈ 𝐴) |
19 | 4 | oveq1i 5910 |
. . . . . . 7
⊢ (𝐻 ↾s 𝐴) = ((𝐺 ↾s 𝑆) ↾s 𝐴) |
20 | | submrcl 12946 |
. . . . . . . . 9
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) |
21 | 20 | adantr 276 |
. . . . . . . 8
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆) → 𝐺 ∈ Mnd) |
22 | | ressabsg 12599 |
. . . . . . . 8
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆 ∧ 𝐺 ∈ Mnd) → ((𝐺 ↾s 𝑆) ↾s 𝐴) = (𝐺 ↾s 𝐴)) |
23 | 21, 22 | mpd3an3 1349 |
. . . . . . 7
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆) → ((𝐺 ↾s 𝑆) ↾s 𝐴) = (𝐺 ↾s 𝐴)) |
24 | 19, 23 | eqtrid 2234 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆) → (𝐻 ↾s 𝐴) = (𝐺 ↾s 𝐴)) |
25 | 7, 24 | syldan 282 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻 ↾s 𝐴) = (𝐺 ↾s 𝐴)) |
26 | | eqid 2189 |
. . . . . . 7
⊢ (𝐻 ↾s 𝐴) = (𝐻 ↾s 𝐴) |
27 | 26 | submmnd 12955 |
. . . . . 6
⊢ (𝐴 ∈ (SubMnd‘𝐻) → (𝐻 ↾s 𝐴) ∈ Mnd) |
28 | 27 | adantl 277 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻 ↾s 𝐴) ∈ Mnd) |
29 | 25, 28 | eqeltrrd 2267 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐺 ↾s 𝐴) ∈ Mnd) |
30 | 20 | adantr 276 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐺 ∈ Mnd) |
31 | | eqid 2189 |
. . . . . 6
⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) |
32 | 8, 12, 31 | issubm2 12948 |
. . . . 5
⊢ (𝐺 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝐴 ∧ (𝐺 ↾s 𝐴) ∈ Mnd))) |
33 | 30, 32 | syl 14 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ 𝐴 ∧ (𝐺 ↾s 𝐴) ∈ Mnd))) |
34 | 11, 18, 29, 33 | mpbir3and 1182 |
. . 3
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ∈ (SubMnd‘𝐺)) |
35 | 34, 7 | jca 306 |
. 2
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) |
36 | | simprr 531 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → 𝐴 ⊆ 𝑆) |
37 | 5 | adantr 276 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → 𝑆 = (Base‘𝐻)) |
38 | 36, 37 | sseqtrd 3208 |
. . 3
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → 𝐴 ⊆ (Base‘𝐻)) |
39 | 13 | adantr 276 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → (0g‘𝐺) = (0g‘𝐻)) |
40 | 12 | subm0cl 12953 |
. . . . 5
⊢ (𝐴 ∈ (SubMnd‘𝐺) →
(0g‘𝐺)
∈ 𝐴) |
41 | 40 | ad2antrl 490 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → (0g‘𝐺) ∈ 𝐴) |
42 | 39, 41 | eqeltrrd 2267 |
. . 3
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → (0g‘𝐻) ∈ 𝐴) |
43 | 24 | adantrl 478 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → (𝐻 ↾s 𝐴) = (𝐺 ↾s 𝐴)) |
44 | 31 | submmnd 12955 |
. . . . 5
⊢ (𝐴 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝐴) ∈ Mnd) |
45 | 44 | ad2antrl 490 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → (𝐺 ↾s 𝐴) ∈ Mnd) |
46 | 43, 45 | eqeltrd 2266 |
. . 3
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → (𝐻 ↾s 𝐴) ∈ Mnd) |
47 | 4 | submmnd 12955 |
. . . . 5
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd) |
48 | 47 | adantr 276 |
. . . 4
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → 𝐻 ∈ Mnd) |
49 | 1, 15, 26 | issubm2 12948 |
. . . 4
⊢ (𝐻 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g‘𝐻) ∈ 𝐴 ∧ (𝐻 ↾s 𝐴) ∈ Mnd))) |
50 | 48, 49 | syl 14 |
. . 3
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g‘𝐻) ∈ 𝐴 ∧ (𝐻 ↾s 𝐴) ∈ Mnd))) |
51 | 38, 42, 46, 50 | mpbir3and 1182 |
. 2
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆)) → 𝐴 ∈ (SubMnd‘𝐻)) |
52 | 35, 51 | impbida 596 |
1
⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆))) |