ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubm GIF version

Theorem subsubm 13511
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypothesis
Ref Expression
subsubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubm (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubm
StepHypRef Expression
1 eqid 2229 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
21submss 13504 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
32adantl 277 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
4 subsubm.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
54submbas 13509 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
65adantr 276 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 = (Base‘𝐻))
73, 6sseqtrrd 3263 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴𝑆)
8 eqid 2229 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
98submss 13504 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
109adantr 276 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
117, 10sstrd 3234 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
12 eqid 2229 . . . . . . 7 (0g𝐺) = (0g𝐺)
134, 12subm0 13510 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1413adantr 276 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) = (0g𝐻))
15 eqid 2229 . . . . . . 7 (0g𝐻) = (0g𝐻)
1615subm0cl 13506 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (0g𝐻) ∈ 𝐴)
1716adantl 277 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐻) ∈ 𝐴)
1814, 17eqeltrd 2306 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) ∈ 𝐴)
194oveq1i 6010 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
20 submrcl 13499 . . . . . . . . 9 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2120adantr 276 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → 𝐺 ∈ Mnd)
22 ressabsg 13104 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆𝐺 ∈ Mnd) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
2321, 22mpd3an3 1372 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
2419, 23eqtrid 2274 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
257, 24syldan 282 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
26 eqid 2229 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
2726submmnd 13508 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (𝐻s 𝐴) ∈ Mnd)
2827adantl 277 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) ∈ Mnd)
2925, 28eqeltrrd 2307 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐺s 𝐴) ∈ Mnd)
3020adantr 276 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐺 ∈ Mnd)
31 eqid 2229 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
328, 12, 31issubm2 13501 . . . . 5 (𝐺 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3330, 32syl 14 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3411, 18, 29, 33mpbir3and 1204 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ∈ (SubMnd‘𝐺))
3534, 7jca 306 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆))
36 simprr 531 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
375adantr 276 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
3836, 37sseqtrd 3262 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3913adantr 276 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) = (0g𝐻))
4012subm0cl 13506 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝐴)
4140ad2antrl 490 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) ∈ 𝐴)
4239, 41eqeltrrd 2307 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐻) ∈ 𝐴)
4324adantrl 478 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
4431submmnd 13508 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (𝐺s 𝐴) ∈ Mnd)
4544ad2antrl 490 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Mnd)
4643, 45eqeltrd 2306 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Mnd)
474submmnd 13508 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
4847adantr 276 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Mnd)
491, 15, 26issubm2 13501 . . . 4 (𝐻 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
5048, 49syl 14 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
5138, 42, 46, 50mpbir3and 1204 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubMnd‘𝐻))
5235, 51impbida 598 1 (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wss 3197  cfv 5317  (class class class)co 6000  Basecbs 13027  s cress 13028  0gc0g 13284  Mndcmnd 13444  SubMndcsubmnd 13486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-submnd 13488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator