ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgcpbl GIF version

Theorem eqgcpbl 13298
Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgcpbl.p + = (+g𝐺)
Assertion
Ref Expression
eqgcpbl (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))

Proof of Theorem eqgcpbl
StepHypRef Expression
1 nsgsubg 13275 . . . . . 6 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
21adantr 276 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (SubGrp‘𝐺))
3 subgrcl 13249 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 14 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐺 ∈ Grp)
5 simprl 529 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴 𝐶)
6 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
76subgss 13244 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
82, 7syl 14 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌𝑋)
9 eqid 2193 . . . . . . . 8 (invg𝐺) = (invg𝐺)
10 eqgcpbl.p . . . . . . . 8 + = (+g𝐺)
11 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
126, 9, 10, 11eqgval 13293 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
134, 8, 12syl2anc 411 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
145, 13mpbid 147 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌))
1514simp1d 1011 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴𝑋)
16 simprr 531 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵 𝐷)
176, 9, 10, 11eqgval 13293 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
184, 8, 17syl2anc 411 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
1916, 18mpbid 147 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌))
2019simp1d 1011 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵𝑋)
216, 10grpcl 13080 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
224, 15, 20, 21syl3anc 1249 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) ∈ 𝑋)
2314simp2d 1012 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐶𝑋)
2419simp2d 1012 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐷𝑋)
256, 10grpcl 13080 . . . 4 ((𝐺 ∈ Grp ∧ 𝐶𝑋𝐷𝑋) → (𝐶 + 𝐷) ∈ 𝑋)
264, 23, 24, 25syl3anc 1249 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐶 + 𝐷) ∈ 𝑋)
276, 10, 9grpinvadd 13150 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
284, 15, 20, 27syl3anc 1249 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
2928oveq1d 5933 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)))
306, 9grpinvcl 13120 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
314, 20, 30syl2anc 411 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐵) ∈ 𝑋)
326, 9grpinvcl 13120 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
334, 15, 32syl2anc 411 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
346, 10grpass 13081 . . . . . 6 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐵) ∈ 𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
354, 31, 33, 26, 34syl13anc 1251 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
3629, 35eqtrd 2226 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
376, 10grpass 13081 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋𝐷𝑋)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
384, 33, 23, 24, 37syl13anc 1251 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
3938oveq1d 5933 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)))
406, 10grpcl 13080 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
414, 33, 23, 40syl3anc 1249 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
426, 10grpass 13081 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋𝐷𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
434, 41, 24, 31, 42syl13anc 1251 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4439, 43eqtr3d 2228 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4514simp3d 1013 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)
4619simp3d 1013 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)
47 simpl 109 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (NrmSGrp‘𝐺))
486, 10nsgbi 13274 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ ((invg𝐺)‘𝐵) ∈ 𝑋𝐷𝑋) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
4947, 31, 24, 48syl3anc 1249 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
5046, 49mpbid 147 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌)
5110subgcl 13254 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌 ∧ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
522, 45, 50, 51syl3anc 1249 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
5344, 52eqeltrd 2270 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌)
546, 10grpcl 13080 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
554, 33, 26, 54syl3anc 1249 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
566, 10nsgbi 13274 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5747, 55, 31, 56syl3anc 1249 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5853, 57mpbid 147 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌)
5936, 58eqeltrd 2270 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)
606, 9, 10, 11eqgval 13293 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
614, 8, 60syl2anc 411 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
6222, 26, 59, 61mpbir3and 1182 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) (𝐶 + 𝐷))
6362ex 115 1 (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wss 3153   class class class wbr 4029  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Grpcgrp 13072  invgcminusg 13073  SubGrpcsubg 13237  NrmSGrpcnsg 13238   ~QG cqg 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-nsg 13241  df-eqg 13242
This theorem is referenced by:  qusgrp  13302  qusadd  13304  qus2idrng  14021  qus1  14022
  Copyright terms: Public domain W3C validator