ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgcpbl GIF version

Theorem eqgcpbl 13358
Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgcpbl.p + = (+g𝐺)
Assertion
Ref Expression
eqgcpbl (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))

Proof of Theorem eqgcpbl
StepHypRef Expression
1 nsgsubg 13335 . . . . . 6 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
21adantr 276 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (SubGrp‘𝐺))
3 subgrcl 13309 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 14 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐺 ∈ Grp)
5 simprl 529 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴 𝐶)
6 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
76subgss 13304 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
82, 7syl 14 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌𝑋)
9 eqid 2196 . . . . . . . 8 (invg𝐺) = (invg𝐺)
10 eqgcpbl.p . . . . . . . 8 + = (+g𝐺)
11 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
126, 9, 10, 11eqgval 13353 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
134, 8, 12syl2anc 411 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
145, 13mpbid 147 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌))
1514simp1d 1011 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴𝑋)
16 simprr 531 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵 𝐷)
176, 9, 10, 11eqgval 13353 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
184, 8, 17syl2anc 411 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
1916, 18mpbid 147 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌))
2019simp1d 1011 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵𝑋)
216, 10grpcl 13140 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
224, 15, 20, 21syl3anc 1249 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) ∈ 𝑋)
2314simp2d 1012 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐶𝑋)
2419simp2d 1012 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐷𝑋)
256, 10grpcl 13140 . . . 4 ((𝐺 ∈ Grp ∧ 𝐶𝑋𝐷𝑋) → (𝐶 + 𝐷) ∈ 𝑋)
264, 23, 24, 25syl3anc 1249 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐶 + 𝐷) ∈ 𝑋)
276, 10, 9grpinvadd 13210 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
284, 15, 20, 27syl3anc 1249 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
2928oveq1d 5937 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)))
306, 9grpinvcl 13180 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
314, 20, 30syl2anc 411 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐵) ∈ 𝑋)
326, 9grpinvcl 13180 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
334, 15, 32syl2anc 411 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
346, 10grpass 13141 . . . . . 6 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐵) ∈ 𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
354, 31, 33, 26, 34syl13anc 1251 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
3629, 35eqtrd 2229 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
376, 10grpass 13141 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋𝐷𝑋)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
384, 33, 23, 24, 37syl13anc 1251 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
3938oveq1d 5937 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)))
406, 10grpcl 13140 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
414, 33, 23, 40syl3anc 1249 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
426, 10grpass 13141 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋𝐷𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
434, 41, 24, 31, 42syl13anc 1251 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4439, 43eqtr3d 2231 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4514simp3d 1013 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)
4619simp3d 1013 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)
47 simpl 109 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (NrmSGrp‘𝐺))
486, 10nsgbi 13334 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ ((invg𝐺)‘𝐵) ∈ 𝑋𝐷𝑋) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
4947, 31, 24, 48syl3anc 1249 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
5046, 49mpbid 147 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌)
5110subgcl 13314 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌 ∧ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
522, 45, 50, 51syl3anc 1249 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
5344, 52eqeltrd 2273 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌)
546, 10grpcl 13140 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
554, 33, 26, 54syl3anc 1249 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
566, 10nsgbi 13334 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5747, 55, 31, 56syl3anc 1249 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5853, 57mpbid 147 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌)
5936, 58eqeltrd 2273 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)
606, 9, 10, 11eqgval 13353 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
614, 8, 60syl2anc 411 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
6222, 26, 59, 61mpbir3and 1182 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) (𝐶 + 𝐷))
6362ex 115 1 (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Grpcgrp 13132  invgcminusg 13133  SubGrpcsubg 13297  NrmSGrpcnsg 13298   ~QG cqg 13299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-nsg 13301  df-eqg 13302
This theorem is referenced by:  qusgrp  13362  qusadd  13364  qus2idrng  14081  qus1  14082
  Copyright terms: Public domain W3C validator