ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssubg GIF version

Theorem lsssubg 14209
Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.)
Hypothesis
Ref Expression
lsssubg.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssubg ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))

Proof of Theorem lsssubg
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 lsssubg.s . . 3 𝑆 = (LSubSp‘𝑊)
31, 2lssssg 14192 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
4 eqid 2206 . . . 4 (0g𝑊) = (0g𝑊)
54, 2lss0cl 14201 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑊) ∈ 𝑈)
6 elex2 2790 . . 3 ((0g𝑊) ∈ 𝑈 → ∃𝑤 𝑤𝑈)
75, 6syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∃𝑤 𝑤𝑈)
8 eqid 2206 . . . . . . 7 (+g𝑊) = (+g𝑊)
98, 2lssvacl 14197 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(+g𝑊)𝑦) ∈ 𝑈)
109anassrs 400 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) ∧ 𝑦𝑈) → (𝑥(+g𝑊)𝑦) ∈ 𝑈)
1110ralrimiva 2580 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → ∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈)
12 eqid 2206 . . . . . 6 (invg𝑊) = (invg𝑊)
132, 12lssvnegcl 14208 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → ((invg𝑊)‘𝑥) ∈ 𝑈)
14133expa 1206 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → ((invg𝑊)‘𝑥) ∈ 𝑈)
1511, 14jca 306 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → (∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈 ∧ ((invg𝑊)‘𝑥) ∈ 𝑈))
1615ralrimiva 2580 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∀𝑥𝑈 (∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈 ∧ ((invg𝑊)‘𝑥) ∈ 𝑈))
17 lmodgrp 14126 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
1817adantr 276 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ Grp)
191, 8, 12issubg2m 13595 . . 3 (𝑊 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑤 𝑤𝑈 ∧ ∀𝑥𝑈 (∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈 ∧ ((invg𝑊)‘𝑥) ∈ 𝑈))))
2018, 19syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑤 𝑤𝑈 ∧ ∀𝑥𝑈 (∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈 ∧ ((invg𝑊)‘𝑥) ∈ 𝑈))))
213, 7, 16, 20mpbir3and 1183 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wss 3170  cfv 5279  (class class class)co 5956  Basecbs 12902  +gcplusg 12979  0gc0g 13158  Grpcgrp 13402  invgcminusg 13403  SubGrpcsubg 13573  LModclmod 14119  LSubSpclss 14184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-iress 12910  df-plusg 12992  df-mulr 12993  df-sca 12995  df-vsca 12996  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-minusg 13406  df-sbg 13407  df-subg 13576  df-mgp 13753  df-ur 13792  df-ring 13830  df-lmod 14121  df-lssm 14185
This theorem is referenced by:  lsssssubg  14210  islss3  14211  islss4  14214  lspsnsubg  14228
  Copyright terms: Public domain W3C validator