ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssubg GIF version

Theorem lsssubg 13469
Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.)
Hypothesis
Ref Expression
lsssubg.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssubg ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))

Proof of Theorem lsssubg
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 lsssubg.s . . 3 𝑆 = (LSubSp‘𝑊)
31, 2lssssg 13452 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
4 eqid 2177 . . . 4 (0g𝑊) = (0g𝑊)
54, 2lss0cl 13460 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑊) ∈ 𝑈)
6 elex2 2755 . . 3 ((0g𝑊) ∈ 𝑈 → ∃𝑤 𝑤𝑈)
75, 6syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∃𝑤 𝑤𝑈)
8 eqid 2177 . . . . . . 7 (+g𝑊) = (+g𝑊)
98, 2lssvacl 13466 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(+g𝑊)𝑦) ∈ 𝑈)
109anassrs 400 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) ∧ 𝑦𝑈) → (𝑥(+g𝑊)𝑦) ∈ 𝑈)
1110ralrimiva 2550 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → ∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈)
12 eqid 2177 . . . . . 6 (invg𝑊) = (invg𝑊)
132, 12lssvnegcl 13468 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑥𝑈) → ((invg𝑊)‘𝑥) ∈ 𝑈)
14133expa 1203 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → ((invg𝑊)‘𝑥) ∈ 𝑈)
1511, 14jca 306 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → (∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈 ∧ ((invg𝑊)‘𝑥) ∈ 𝑈))
1615ralrimiva 2550 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∀𝑥𝑈 (∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈 ∧ ((invg𝑊)‘𝑥) ∈ 𝑈))
17 lmodgrp 13389 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
1817adantr 276 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ Grp)
191, 8, 12issubg2m 13054 . . 3 (𝑊 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑤 𝑤𝑈 ∧ ∀𝑥𝑈 (∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈 ∧ ((invg𝑊)‘𝑥) ∈ 𝑈))))
2018, 19syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑤 𝑤𝑈 ∧ ∀𝑥𝑈 (∀𝑦𝑈 (𝑥(+g𝑊)𝑦) ∈ 𝑈 ∧ ((invg𝑊)‘𝑥) ∈ 𝑈))))
213, 7, 16, 20mpbir3and 1180 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wex 1492  wcel 2148  wral 2455  wss 3131  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  0gc0g 12710  Grpcgrp 12882  invgcminusg 12883  SubGrpcsubg 13032  LModclmod 13382  LSubSpclss 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-subg 13035  df-mgp 13136  df-ur 13148  df-ring 13186  df-lmod 13384  df-lssm 13448
This theorem is referenced by:  lsssssubg  13470  islss3  13471  islss4  13474  lspsnsubg  13487
  Copyright terms: Public domain W3C validator