![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lsssubg | GIF version |
Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.) |
Ref | Expression |
---|---|
lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsssubg | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lsssubg.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssssg 13859 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
4 | eqid 2193 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | 4, 2 | lss0cl 13868 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (0g‘𝑊) ∈ 𝑈) |
6 | elex2 2776 | . . 3 ⊢ ((0g‘𝑊) ∈ 𝑈 → ∃𝑤 𝑤 ∈ 𝑈) | |
7 | 5, 6 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∃𝑤 𝑤 ∈ 𝑈) |
8 | eqid 2193 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
9 | 8, 2 | lssvacl 13864 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
10 | 9 | anassrs 400 | . . . . 5 ⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
11 | 10 | ralrimiva 2567 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
12 | eqid 2193 | . . . . . 6 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
13 | 2, 12 | lssvnegcl 13875 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → ((invg‘𝑊)‘𝑥) ∈ 𝑈) |
14 | 13 | 3expa 1205 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → ((invg‘𝑊)‘𝑥) ∈ 𝑈) |
15 | 11, 14 | jca 306 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)) |
16 | 15 | ralrimiva 2567 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)) |
17 | lmodgrp 13793 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
18 | 17 | adantr 276 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ Grp) |
19 | 1, 8, 12 | issubg2m 13262 | . . 3 ⊢ (𝑊 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑤 𝑤 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)))) |
20 | 18, 19 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑤 𝑤 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)))) |
21 | 3, 7, 16, 20 | mpbir3and 1182 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 0gc0g 12870 Grpcgrp 13075 invgcminusg 13076 SubGrpcsubg 13240 LModclmod 13786 LSubSpclss 13851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-subg 13243 df-mgp 13420 df-ur 13459 df-ring 13497 df-lmod 13788 df-lssm 13852 |
This theorem is referenced by: lsssssubg 13877 islss3 13878 islss4 13881 lspsnsubg 13895 |
Copyright terms: Public domain | W3C validator |