| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmodfz | GIF version | ||
| Description: An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| zmodfz | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmodcl 10502 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) | |
| 2 | 1 | nn0zd 9506 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℤ) |
| 3 | 1 | nn0ge0d 9364 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴 mod 𝐵)) |
| 4 | zq 9760 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℚ) |
| 6 | nnq 9767 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℚ) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℚ) |
| 8 | nngt0 9074 | . . . 4 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
| 10 | modqlt 10491 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) < 𝐵) | |
| 11 | 5, 7, 9, 10 | syl3anc 1250 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) < 𝐵) |
| 12 | 0z 9396 | . . 3 ⊢ 0 ∈ ℤ | |
| 13 | nnz 9404 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 14 | 13 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
| 15 | elfzm11 10226 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝐵) ∈ (0...(𝐵 − 1)) ↔ ((𝐴 mod 𝐵) ∈ ℤ ∧ 0 ≤ (𝐴 mod 𝐵) ∧ (𝐴 mod 𝐵) < 𝐵))) | |
| 16 | 12, 14, 15 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 mod 𝐵) ∈ (0...(𝐵 − 1)) ↔ ((𝐴 mod 𝐵) ∈ ℤ ∧ 0 ≤ (𝐴 mod 𝐵) ∧ (𝐴 mod 𝐵) < 𝐵))) |
| 17 | 2, 3, 11, 16 | mpbir3and 1183 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4048 (class class class)co 5954 0cc0 7938 1c1 7939 < clt 8120 ≤ cle 8121 − cmin 8256 ℕcn 9049 ℤcz 9385 ℚcq 9753 ...cfz 10143 mod cmo 10480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-n0 9309 df-z 9386 df-q 9754 df-rp 9789 df-fz 10144 df-fl 10426 df-mod 10481 |
| This theorem is referenced by: zmodfzo 10505 mod2eq1n2dvds 12240 bezoutlemmain 12369 prmdiv 12607 4sqlem11 12774 lgsdir2lem3 15557 lgseisenlem1 15597 |
| Copyright terms: Public domain | W3C validator |