ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrgd GIF version

Theorem issubrgd 13729
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubrgd.s (𝜑𝑆 = (𝐼s 𝐷))
issubrgd.z (𝜑0 = (0g𝐼))
issubrgd.p (𝜑+ = (+g𝐼))
issubrgd.ss (𝜑𝐷 ⊆ (Base‘𝐼))
issubrgd.zcl (𝜑0𝐷)
issubrgd.acl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
issubrgd.ncl ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
issubrgd.o (𝜑1 = (1r𝐼))
issubrgd.t (𝜑· = (.r𝐼))
issubrgd.ocl (𝜑1𝐷)
issubrgd.tcl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 · 𝑦) ∈ 𝐷)
issubrgd.g (𝜑𝐼 ∈ Ring)
Assertion
Ref Expression
issubrgd (𝜑𝐷 ∈ (SubRing‘𝐼))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐷,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   1 (𝑥,𝑦)

Proof of Theorem issubrgd
StepHypRef Expression
1 issubrgd.s . . 3 (𝜑𝑆 = (𝐼s 𝐷))
2 issubrgd.z . . 3 (𝜑0 = (0g𝐼))
3 issubrgd.p . . 3 (𝜑+ = (+g𝐼))
4 issubrgd.ss . . 3 (𝜑𝐷 ⊆ (Base‘𝐼))
5 issubrgd.zcl . . 3 (𝜑0𝐷)
6 issubrgd.acl . . 3 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
7 issubrgd.ncl . . 3 ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
8 issubrgd.g . . . 4 (𝜑𝐼 ∈ Ring)
9 ringgrp 13316 . . . 4 (𝐼 ∈ Ring → 𝐼 ∈ Grp)
108, 9syl 14 . . 3 (𝜑𝐼 ∈ Grp)
111, 2, 3, 4, 5, 6, 7, 10issubgrpd2 13095 . 2 (𝜑𝐷 ∈ (SubGrp‘𝐼))
12 issubrgd.o . . 3 (𝜑1 = (1r𝐼))
13 issubrgd.ocl . . 3 (𝜑1𝐷)
1412, 13eqeltrrd 2267 . 2 (𝜑 → (1r𝐼) ∈ 𝐷)
15 issubrgd.t . . . . 5 (𝜑· = (.r𝐼))
1615oveqdr 5919 . . . 4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 · 𝑦) = (𝑥(.r𝐼)𝑦))
17 issubrgd.tcl . . . . 5 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 · 𝑦) ∈ 𝐷)
18173expb 1206 . . . 4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 · 𝑦) ∈ 𝐷)
1916, 18eqeltrrd 2267 . . 3 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐼)𝑦) ∈ 𝐷)
2019ralrimivva 2572 . 2 (𝜑 → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐼)𝑦) ∈ 𝐷)
21 eqid 2189 . . . 4 (Base‘𝐼) = (Base‘𝐼)
22 eqid 2189 . . . 4 (1r𝐼) = (1r𝐼)
23 eqid 2189 . . . 4 (.r𝐼) = (.r𝐼)
2421, 22, 23issubrg2 13549 . . 3 (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r𝐼) ∈ 𝐷 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐼)𝑦) ∈ 𝐷)))
258, 24syl 14 . 2 (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r𝐼) ∈ 𝐷 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐼)𝑦) ∈ 𝐷)))
2611, 14, 20, 25mpbir3and 1182 1 (𝜑𝐷 ∈ (SubRing‘𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wral 2468  wss 3144  cfv 5231  (class class class)co 5891  Basecbs 12480  s cress 12481  +gcplusg 12555  .rcmulr 12556  0gc0g 12727  Grpcgrp 12911  invgcminusg 12912  SubGrpcsubg 13072  1rcur 13274  Ringcrg 13311  SubRingcsubrg 13525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-pre-ltirr 7941  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-ltxr 8015  df-inn 8938  df-2 8996  df-3 8997  df-ndx 12483  df-slot 12484  df-base 12486  df-sets 12487  df-iress 12488  df-plusg 12568  df-mulr 12569  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915  df-subg 13075  df-mgp 13236  df-ur 13275  df-ring 13313  df-subrg 13527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator