ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrgd GIF version

Theorem issubrgd 13948
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubrgd.s (𝜑𝑆 = (𝐼s 𝐷))
issubrgd.z (𝜑0 = (0g𝐼))
issubrgd.p (𝜑+ = (+g𝐼))
issubrgd.ss (𝜑𝐷 ⊆ (Base‘𝐼))
issubrgd.zcl (𝜑0𝐷)
issubrgd.acl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
issubrgd.ncl ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
issubrgd.o (𝜑1 = (1r𝐼))
issubrgd.t (𝜑· = (.r𝐼))
issubrgd.ocl (𝜑1𝐷)
issubrgd.tcl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 · 𝑦) ∈ 𝐷)
issubrgd.g (𝜑𝐼 ∈ Ring)
Assertion
Ref Expression
issubrgd (𝜑𝐷 ∈ (SubRing‘𝐼))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐷,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   1 (𝑥,𝑦)

Proof of Theorem issubrgd
StepHypRef Expression
1 issubrgd.s . . 3 (𝜑𝑆 = (𝐼s 𝐷))
2 issubrgd.z . . 3 (𝜑0 = (0g𝐼))
3 issubrgd.p . . 3 (𝜑+ = (+g𝐼))
4 issubrgd.ss . . 3 (𝜑𝐷 ⊆ (Base‘𝐼))
5 issubrgd.zcl . . 3 (𝜑0𝐷)
6 issubrgd.acl . . 3 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
7 issubrgd.ncl . . 3 ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
8 issubrgd.g . . . 4 (𝜑𝐼 ∈ Ring)
9 ringgrp 13497 . . . 4 (𝐼 ∈ Ring → 𝐼 ∈ Grp)
108, 9syl 14 . . 3 (𝜑𝐼 ∈ Grp)
111, 2, 3, 4, 5, 6, 7, 10issubgrpd2 13260 . 2 (𝜑𝐷 ∈ (SubGrp‘𝐼))
12 issubrgd.o . . 3 (𝜑1 = (1r𝐼))
13 issubrgd.ocl . . 3 (𝜑1𝐷)
1412, 13eqeltrrd 2271 . 2 (𝜑 → (1r𝐼) ∈ 𝐷)
15 issubrgd.t . . . . 5 (𝜑· = (.r𝐼))
1615oveqdr 5946 . . . 4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 · 𝑦) = (𝑥(.r𝐼)𝑦))
17 issubrgd.tcl . . . . 5 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 · 𝑦) ∈ 𝐷)
18173expb 1206 . . . 4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 · 𝑦) ∈ 𝐷)
1916, 18eqeltrrd 2271 . . 3 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐼)𝑦) ∈ 𝐷)
2019ralrimivva 2576 . 2 (𝜑 → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐼)𝑦) ∈ 𝐷)
21 eqid 2193 . . . 4 (Base‘𝐼) = (Base‘𝐼)
22 eqid 2193 . . . 4 (1r𝐼) = (1r𝐼)
23 eqid 2193 . . . 4 (.r𝐼) = (.r𝐼)
2421, 22, 23issubrg2 13737 . . 3 (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r𝐼) ∈ 𝐷 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐼)𝑦) ∈ 𝐷)))
258, 24syl 14 . 2 (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r𝐼) ∈ 𝐷 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐼)𝑦) ∈ 𝐷)))
2611, 14, 20, 25mpbir3and 1182 1 (𝜑𝐷 ∈ (SubRing‘𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  wss 3153  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  +gcplusg 12695  .rcmulr 12696  0gc0g 12867  Grpcgrp 13072  invgcminusg 13073  SubGrpcsubg 13237  1rcur 13455  Ringcrg 13492  SubRingcsubrg 13713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-mgp 13417  df-ur 13456  df-ring 13494  df-subrg 13715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator