| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubrgd | GIF version | ||
| Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubrgd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
| issubrgd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
| issubrgd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
| issubrgd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
| issubrgd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
| issubrgd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| issubrgd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
| issubrgd.o | ⊢ (𝜑 → 1 = (1r‘𝐼)) |
| issubrgd.t | ⊢ (𝜑 → · = (.r‘𝐼)) |
| issubrgd.ocl | ⊢ (𝜑 → 1 ∈ 𝐷) |
| issubrgd.tcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) |
| issubrgd.g | ⊢ (𝜑 → 𝐼 ∈ Ring) |
| Ref | Expression |
|---|---|
| issubrgd | ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrgd.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) | |
| 2 | issubrgd.z | . . 3 ⊢ (𝜑 → 0 = (0g‘𝐼)) | |
| 3 | issubrgd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐼)) | |
| 4 | issubrgd.ss | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
| 5 | issubrgd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
| 6 | issubrgd.acl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
| 7 | issubrgd.ncl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
| 8 | issubrgd.g | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Ring) | |
| 9 | ringgrp 13878 | . . . 4 ⊢ (𝐼 ∈ Ring → 𝐼 ∈ Grp) | |
| 10 | 8, 9 | syl 14 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 10 | issubgrpd2 13641 | . 2 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| 12 | issubrgd.o | . . 3 ⊢ (𝜑 → 1 = (1r‘𝐼)) | |
| 13 | issubrgd.ocl | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) | |
| 14 | 12, 13 | eqeltrrd 2285 | . 2 ⊢ (𝜑 → (1r‘𝐼) ∈ 𝐷) |
| 15 | issubrgd.t | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐼)) | |
| 16 | 15 | oveqdr 5995 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) = (𝑥(.r‘𝐼)𝑦)) |
| 17 | issubrgd.tcl | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) | |
| 18 | 17 | 3expb 1207 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) ∈ 𝐷) |
| 19 | 16, 18 | eqeltrrd 2285 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
| 20 | 19 | ralrimivva 2590 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
| 21 | eqid 2207 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 22 | eqid 2207 | . . . 4 ⊢ (1r‘𝐼) = (1r‘𝐼) | |
| 23 | eqid 2207 | . . . 4 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
| 24 | 21, 22, 23 | issubrg2 14118 | . . 3 ⊢ (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
| 25 | 8, 24 | syl 14 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
| 26 | 11, 14, 20, 25 | mpbir3and 1183 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ⊆ wss 3174 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 ↾s cress 12948 +gcplusg 13024 .rcmulr 13025 0gc0g 13203 Grpcgrp 13447 invgcminusg 13448 SubGrpcsubg 13618 1rcur 13836 Ringcrg 13873 SubRingcsubrg 14094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-subg 13621 df-mgp 13798 df-ur 13837 df-ring 13875 df-subrg 14096 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |