| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubrgd | GIF version | ||
| Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubrgd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
| issubrgd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
| issubrgd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
| issubrgd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
| issubrgd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
| issubrgd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| issubrgd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
| issubrgd.o | ⊢ (𝜑 → 1 = (1r‘𝐼)) |
| issubrgd.t | ⊢ (𝜑 → · = (.r‘𝐼)) |
| issubrgd.ocl | ⊢ (𝜑 → 1 ∈ 𝐷) |
| issubrgd.tcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) |
| issubrgd.g | ⊢ (𝜑 → 𝐼 ∈ Ring) |
| Ref | Expression |
|---|---|
| issubrgd | ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrgd.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) | |
| 2 | issubrgd.z | . . 3 ⊢ (𝜑 → 0 = (0g‘𝐼)) | |
| 3 | issubrgd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐼)) | |
| 4 | issubrgd.ss | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
| 5 | issubrgd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
| 6 | issubrgd.acl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
| 7 | issubrgd.ncl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
| 8 | issubrgd.g | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Ring) | |
| 9 | ringgrp 13763 | . . . 4 ⊢ (𝐼 ∈ Ring → 𝐼 ∈ Grp) | |
| 10 | 8, 9 | syl 14 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 10 | issubgrpd2 13526 | . 2 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| 12 | issubrgd.o | . . 3 ⊢ (𝜑 → 1 = (1r‘𝐼)) | |
| 13 | issubrgd.ocl | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) | |
| 14 | 12, 13 | eqeltrrd 2283 | . 2 ⊢ (𝜑 → (1r‘𝐼) ∈ 𝐷) |
| 15 | issubrgd.t | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐼)) | |
| 16 | 15 | oveqdr 5972 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) = (𝑥(.r‘𝐼)𝑦)) |
| 17 | issubrgd.tcl | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) | |
| 18 | 17 | 3expb 1207 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) ∈ 𝐷) |
| 19 | 16, 18 | eqeltrrd 2283 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
| 20 | 19 | ralrimivva 2588 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
| 21 | eqid 2205 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 22 | eqid 2205 | . . . 4 ⊢ (1r‘𝐼) = (1r‘𝐼) | |
| 23 | eqid 2205 | . . . 4 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
| 24 | 21, 22, 23 | issubrg2 14003 | . . 3 ⊢ (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
| 25 | 8, 24 | syl 14 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
| 26 | 11, 14, 20, 25 | mpbir3and 1183 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ⊆ wss 3166 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 ↾s cress 12833 +gcplusg 12909 .rcmulr 12910 0gc0g 13088 Grpcgrp 13332 invgcminusg 13333 SubGrpcsubg 13503 1rcur 13721 Ringcrg 13758 SubRingcsubrg 13979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-subg 13506 df-mgp 13683 df-ur 13722 df-ring 13760 df-subrg 13981 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |