| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubrgd | GIF version | ||
| Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubrgd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
| issubrgd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
| issubrgd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
| issubrgd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
| issubrgd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
| issubrgd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| issubrgd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
| issubrgd.o | ⊢ (𝜑 → 1 = (1r‘𝐼)) |
| issubrgd.t | ⊢ (𝜑 → · = (.r‘𝐼)) |
| issubrgd.ocl | ⊢ (𝜑 → 1 ∈ 𝐷) |
| issubrgd.tcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) |
| issubrgd.g | ⊢ (𝜑 → 𝐼 ∈ Ring) |
| Ref | Expression |
|---|---|
| issubrgd | ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrgd.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) | |
| 2 | issubrgd.z | . . 3 ⊢ (𝜑 → 0 = (0g‘𝐼)) | |
| 3 | issubrgd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐼)) | |
| 4 | issubrgd.ss | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
| 5 | issubrgd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
| 6 | issubrgd.acl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
| 7 | issubrgd.ncl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
| 8 | issubrgd.g | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Ring) | |
| 9 | ringgrp 13533 | . . . 4 ⊢ (𝐼 ∈ Ring → 𝐼 ∈ Grp) | |
| 10 | 8, 9 | syl 14 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 10 | issubgrpd2 13296 | . 2 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| 12 | issubrgd.o | . . 3 ⊢ (𝜑 → 1 = (1r‘𝐼)) | |
| 13 | issubrgd.ocl | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) | |
| 14 | 12, 13 | eqeltrrd 2274 | . 2 ⊢ (𝜑 → (1r‘𝐼) ∈ 𝐷) |
| 15 | issubrgd.t | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐼)) | |
| 16 | 15 | oveqdr 5950 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) = (𝑥(.r‘𝐼)𝑦)) |
| 17 | issubrgd.tcl | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) | |
| 18 | 17 | 3expb 1206 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) ∈ 𝐷) |
| 19 | 16, 18 | eqeltrrd 2274 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
| 20 | 19 | ralrimivva 2579 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
| 21 | eqid 2196 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 22 | eqid 2196 | . . . 4 ⊢ (1r‘𝐼) = (1r‘𝐼) | |
| 23 | eqid 2196 | . . . 4 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
| 24 | 21, 22, 23 | issubrg2 13773 | . . 3 ⊢ (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
| 25 | 8, 24 | syl 14 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
| 26 | 11, 14, 20, 25 | mpbir3and 1182 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ‘cfv 5258 (class class class)co 5922 Basecbs 12654 ↾s cress 12655 +gcplusg 12731 .rcmulr 12732 0gc0g 12903 Grpcgrp 13108 invgcminusg 13109 SubGrpcsubg 13273 1rcur 13491 Ringcrg 13528 SubRingcsubrg 13749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-addcom 7977 ax-addass 7979 ax-i2m1 7982 ax-0lt1 7983 ax-0id 7985 ax-rnegex 7986 ax-pre-ltirr 7989 ax-pre-lttrn 7991 ax-pre-ltadd 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8061 df-mnf 8062 df-ltxr 8064 df-inn 8988 df-2 9046 df-3 9047 df-ndx 12657 df-slot 12658 df-base 12660 df-sets 12661 df-iress 12662 df-plusg 12744 df-mulr 12745 df-0g 12905 df-mgm 12975 df-sgrp 13021 df-mnd 13034 df-grp 13111 df-minusg 13112 df-subg 13276 df-mgp 13453 df-ur 13492 df-ring 13530 df-subrg 13751 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |