Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > letrd | GIF version |
Description: Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
letrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
letrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
letrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | letrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | letr 7977 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1228 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 1, 2, 7 | mp2and 430 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3981 ℝcr 7748 ≤ cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltwlin 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: nn0negleid 9255 eluzuzle 9470 infregelbex 9532 fzdisj 9983 difelfzle 10065 flqwordi 10219 btwnzge0 10231 flqleceil 10248 modqltm1p1mod 10307 seq3split 10410 iseqf1olemqcl 10417 iseqf1olemnab 10419 iseqf1olemab 10420 seq3f1olemqsumkj 10429 seq3f1olemqsumk 10430 seq3f1olemqsum 10431 bernneq 10571 bernneq3 10573 nn0opthlem2d 10630 faclbnd 10650 facubnd 10654 seq3coll 10751 resqrexlemover 10948 resqrexlemdecn 10950 resqrexlemcalc3 10954 absle 11027 releabs 11034 maxleastb 11152 climsqz 11272 climsqz2 11273 fsum3cvg3 11333 expcnvap0 11439 geolim2 11449 cvgratnnlemabsle 11464 cvgratnnlemfm 11466 cvgratnnlemrate 11467 cvgratz 11469 mertenslem2 11473 eftlub 11627 cos12dec 11704 divalglemnqt 11853 infssuzex 11878 suprzubdc 11881 ncoprmgcdne1b 12017 prmdc 12058 isprm5lem 12069 eulerthlemrprm 12157 eulerthlema 12158 pcmpt2 12270 pcfac 12276 ennnfoneleminc 12340 ennnfonelemkh 12341 nninfdclemlt 12380 strleund 12478 suplociccex 13203 ivthinclemlopn 13214 ivthinclemuopn 13216 dveflem 13287 cosordlem 13370 rpabscxpbnd 13459 lgsdirprm 13535 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |