ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulnn GIF version

Theorem modqmulnn 10328
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqmulnn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))

Proof of Theorem modqmulnn
StepHypRef Expression
1 nnq 9622 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
213ad2ant1 1018 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℚ)
3 flqcl 10259 . . . . . . 7 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
4 zq 9615 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
53, 4syl 14 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
653ad2ant2 1019 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘𝐴) ∈ ℚ)
7 qmulcl 9626 . . . . 5 ((𝑁 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ∈ ℚ)
82, 6, 7syl2anc 411 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℚ)
9 qre 9614 . . . 4 ((𝑁 · (⌊‘𝐴)) ∈ ℚ → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
108, 9syl 14 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
11 simp2 998 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℚ)
12 qmulcl 9626 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
132, 11, 12syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝐴) ∈ ℚ)
1413flqcld 10263 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℤ)
1514zred 9364 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
16 nnmulcl 8929 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
17 nnq 9622 . . . . . . 7 ((𝑁 · 𝑀) ∈ ℕ → (𝑁 · 𝑀) ∈ ℚ)
1816, 17syl 14 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ)
19183adant2 1016 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ)
20 qre 9614 . . . . 5 ((𝑁 · 𝑀) ∈ ℚ → (𝑁 · 𝑀) ∈ ℝ)
2119, 20syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
22 simp1 997 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℕ)
2322nncnd 8922 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
24 simp3 999 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
2524nncnd 8922 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
2622nnap0d 8954 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 # 0)
2724nnap0d 8954 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 # 0)
2823, 25, 26, 27mulap0d 8604 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) # 0)
29 0z 9253 . . . . . . . . . 10 0 ∈ ℤ
30 zq 9615 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ ℚ)
3129, 30ax-mp 5 . . . . . . . . 9 0 ∈ ℚ
32 qapne 9628 . . . . . . . . 9 (((𝑁 · 𝑀) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0))
3319, 31, 32sylancl 413 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0))
3428, 33mpbid 147 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
35 qdivcl 9632 . . . . . . 7 (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ (𝑁 · 𝑀) ≠ 0) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ)
368, 19, 34, 35syl3anc 1238 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ)
3736flqcld 10263 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℤ)
3837zred 9364 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
3921, 38remulcld 7978 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) ∈ ℝ)
40 nnnn0 9172 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
41 flqmulnn0 10285 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4240, 41sylan 283 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4322, 11, 42syl2anc 411 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4410, 15, 39, 43lesub1dd 8508 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) ≤ ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
4522nnred 8921 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
4624nnred 8921 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
4722nngt0d 8952 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < 𝑁)
4824nngt0d 8952 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < 𝑀)
4945, 46, 47, 48mulgt0d 8070 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < (𝑁 · 𝑀))
50 modqval 10310 . . 3 (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
518, 19, 49, 50syl3anc 1238 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
52 zq 9615 . . . . 5 ((⌊‘(𝑁 · 𝐴)) ∈ ℤ → (⌊‘(𝑁 · 𝐴)) ∈ ℚ)
5314, 52syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℚ)
54 modqval 10310 . . . 4 (((⌊‘(𝑁 · 𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
5553, 19, 49, 54syl3anc 1238 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
56163adant2 1016 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
57 flqdiv 10307 . . . . . . 7 (((𝑁 · 𝐴) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
5813, 56, 57syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
59 flqdiv 10307 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
60593adant1 1015 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
613zcnd 9365 . . . . . . . . . 10 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℂ)
6211, 61syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
6362, 25, 23, 27, 26divcanap5d 8763 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
6463fveq2d 5515 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) = (⌊‘((⌊‘𝐴) / 𝑀)))
65 qcn 9623 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
6611, 65syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℂ)
6766, 25, 23, 27, 26divcanap5d 8763 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
6867fveq2d 5515 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘(𝐴 / 𝑀)))
6960, 64, 683eqtr4rd 2221 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
7058, 69eqtrd 2210 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
7170oveq2d 5885 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))) = ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))
7271oveq2d 5885 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
7355, 72eqtrd 2210 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
7444, 51, 733brtr4d 4032 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802   · cmul 7807   < clt 7982  cle 7983  cmin 8118   # cap 8528   / cdiv 8618  cn 8908  0cn0 9165  cz 9242  cq 9608  cfl 10254   mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator