Proof of Theorem modqmulnn
| Step | Hyp | Ref
| Expression |
| 1 | | nnq 9724 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) |
| 2 | 1 | 3ad2ant1 1020 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈
ℚ) |
| 3 | | flqcl 10380 |
. . . . . . 7
⊢ (𝐴 ∈ ℚ →
(⌊‘𝐴) ∈
ℤ) |
| 4 | | zq 9717 |
. . . . . . 7
⊢
((⌊‘𝐴)
∈ ℤ → (⌊‘𝐴) ∈ ℚ) |
| 5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ ℚ →
(⌊‘𝐴) ∈
ℚ) |
| 6 | 5 | 3ad2ant2 1021 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘𝐴) ∈
ℚ) |
| 7 | | qmulcl 9728 |
. . . . 5
⊢ ((𝑁 ∈ ℚ ∧
(⌊‘𝐴) ∈
ℚ) → (𝑁 ·
(⌊‘𝐴)) ∈
ℚ) |
| 8 | 2, 6, 7 | syl2anc 411 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈
ℚ) |
| 9 | | qre 9716 |
. . . 4
⊢ ((𝑁 · (⌊‘𝐴)) ∈ ℚ → (𝑁 · (⌊‘𝐴)) ∈
ℝ) |
| 10 | 8, 9 | syl 14 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈
ℝ) |
| 11 | | simp2 1000 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈
ℚ) |
| 12 | | qmulcl 9728 |
. . . . . 6
⊢ ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ) |
| 13 | 2, 11, 12 | syl2anc 411 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝐴) ∈ ℚ) |
| 14 | 13 | flqcld 10384 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘(𝑁 ·
𝐴)) ∈
ℤ) |
| 15 | 14 | zred 9465 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘(𝑁 ·
𝐴)) ∈
ℝ) |
| 16 | | nnmulcl 9028 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ) |
| 17 | | nnq 9724 |
. . . . . . 7
⊢ ((𝑁 · 𝑀) ∈ ℕ → (𝑁 · 𝑀) ∈ ℚ) |
| 18 | 16, 17 | syl 14 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ) |
| 19 | 18 | 3adant2 1018 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ) |
| 20 | | qre 9716 |
. . . . 5
⊢ ((𝑁 · 𝑀) ∈ ℚ → (𝑁 · 𝑀) ∈ ℝ) |
| 21 | 19, 20 | syl 14 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ) |
| 22 | | simp1 999 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈
ℕ) |
| 23 | 22 | nncnd 9021 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈
ℂ) |
| 24 | | simp3 1001 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℕ) |
| 25 | 24 | nncnd 9021 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℂ) |
| 26 | 22 | nnap0d 9053 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 # 0) |
| 27 | 24 | nnap0d 9053 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 # 0) |
| 28 | 23, 25, 26, 27 | mulap0d 8702 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) # 0) |
| 29 | | 0z 9354 |
. . . . . . . . . 10
⊢ 0 ∈
ℤ |
| 30 | | zq 9717 |
. . . . . . . . . 10
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . . 9
⊢ 0 ∈
ℚ |
| 32 | | qapne 9730 |
. . . . . . . . 9
⊢ (((𝑁 · 𝑀) ∈ ℚ ∧ 0 ∈ ℚ)
→ ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0)) |
| 33 | 19, 31, 32 | sylancl 413 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0)) |
| 34 | 28, 33 | mpbid 147 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0) |
| 35 | | qdivcl 9734 |
. . . . . . 7
⊢ (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ (𝑁 · 𝑀) ≠ 0) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ) |
| 36 | 8, 19, 34, 35 | syl3anc 1249 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ) |
| 37 | 36 | flqcld 10384 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((𝑁 ·
(⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℤ) |
| 38 | 37 | zred 9465 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((𝑁 ·
(⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ) |
| 39 | 21, 38 | remulcld 8074 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) ∈ ℝ) |
| 40 | | nnnn0 9273 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 41 | | flqmulnn0 10406 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℚ)
→ (𝑁 ·
(⌊‘𝐴)) ≤
(⌊‘(𝑁 ·
𝐴))) |
| 42 | 40, 41 | sylan 283 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) |
| 43 | 22, 11, 42 | syl2anc 411 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) |
| 44 | 10, 15, 39, 43 | lesub1dd 8605 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) ≤ ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))) |
| 45 | 22 | nnred 9020 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈
ℝ) |
| 46 | 24 | nnred 9020 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℝ) |
| 47 | 22 | nngt0d 9051 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 <
𝑁) |
| 48 | 24 | nngt0d 9051 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 <
𝑀) |
| 49 | 45, 46, 47, 48 | mulgt0d 8166 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 <
(𝑁 · 𝑀)) |
| 50 | | modqval 10433 |
. . 3
⊢ (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))) |
| 51 | 8, 19, 49, 50 | syl3anc 1249 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))) |
| 52 | | zq 9717 |
. . . . 5
⊢
((⌊‘(𝑁
· 𝐴)) ∈ ℤ
→ (⌊‘(𝑁
· 𝐴)) ∈
ℚ) |
| 53 | 14, 52 | syl 14 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘(𝑁 ·
𝐴)) ∈
ℚ) |
| 54 | | modqval 10433 |
. . . 4
⊢
(((⌊‘(𝑁
· 𝐴)) ∈ ℚ
∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 <
(𝑁 · 𝑀)) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) ·
(⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))))) |
| 55 | 53, 19, 49, 54 | syl3anc 1249 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
((⌊‘(𝑁 ·
𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) ·
(⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))))) |
| 56 | 16 | 3adant2 1018 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ) |
| 57 | | flqdiv 10430 |
. . . . . . 7
⊢ (((𝑁 · 𝐴) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℕ) →
(⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀)))) |
| 58 | 13, 56, 57 | syl2anc 411 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀)))) |
| 59 | | flqdiv 10430 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀))) |
| 60 | 59 | 3adant1 1017 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀))) |
| 61 | 3 | zcnd 9466 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℚ →
(⌊‘𝐴) ∈
ℂ) |
| 62 | 11, 61 | syl 14 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘𝐴) ∈
ℂ) |
| 63 | 62, 25, 23, 27, 26 | divcanap5d 8861 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀)) |
| 64 | 63 | fveq2d 5565 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((𝑁 ·
(⌊‘𝐴)) / (𝑁 · 𝑀))) = (⌊‘((⌊‘𝐴) / 𝑀))) |
| 65 | | qcn 9725 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℂ) |
| 66 | 11, 65 | syl 14 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈
ℂ) |
| 67 | 66, 25, 23, 27, 26 | divcanap5d 8861 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀)) |
| 68 | 67 | fveq2d 5565 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((𝑁 ·
𝐴) / (𝑁 · 𝑀))) = (⌊‘(𝐴 / 𝑀))) |
| 69 | 60, 64, 68 | 3eqtr4rd 2240 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((𝑁 ·
𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) |
| 70 | 58, 69 | eqtrd 2229 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
(⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) |
| 71 | 70 | oveq2d 5941 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) ·
(⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))) = ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) |
| 72 | 71 | oveq2d 5941 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
((⌊‘(𝑁 ·
𝐴)) − ((𝑁 · 𝑀) ·
(⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))) |
| 73 | 55, 72 | eqtrd 2229 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) →
((⌊‘(𝑁 ·
𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))) |
| 74 | 44, 51, 73 | 3brtr4d 4066 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀))) |