ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulnn GIF version

Theorem modqmulnn 9652
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqmulnn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))

Proof of Theorem modqmulnn
StepHypRef Expression
1 nnq 9027 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
213ad2ant1 962 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℚ)
3 flqcl 9583 . . . . . . 7 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
4 zq 9020 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
53, 4syl 14 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
653ad2ant2 963 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘𝐴) ∈ ℚ)
7 qmulcl 9031 . . . . 5 ((𝑁 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ∈ ℚ)
82, 6, 7syl2anc 403 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℚ)
9 qre 9019 . . . 4 ((𝑁 · (⌊‘𝐴)) ∈ ℚ → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
108, 9syl 14 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
11 simp2 942 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℚ)
12 qmulcl 9031 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
132, 11, 12syl2anc 403 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝐴) ∈ ℚ)
1413flqcld 9587 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℤ)
1514zred 8778 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
16 nnmulcl 8355 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
17 nnq 9027 . . . . . . 7 ((𝑁 · 𝑀) ∈ ℕ → (𝑁 · 𝑀) ∈ ℚ)
1816, 17syl 14 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ)
19183adant2 960 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ)
20 qre 9019 . . . . 5 ((𝑁 · 𝑀) ∈ ℚ → (𝑁 · 𝑀) ∈ ℝ)
2119, 20syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
22 simp1 941 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℕ)
2322nncnd 8348 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
24 simp3 943 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
2524nncnd 8348 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
2622nnap0d 8379 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 # 0)
2724nnap0d 8379 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 # 0)
2823, 25, 26, 27mulap0d 8043 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) # 0)
29 0z 8671 . . . . . . . . . 10 0 ∈ ℤ
30 zq 9020 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ ℚ)
3129, 30ax-mp 7 . . . . . . . . 9 0 ∈ ℚ
32 qapne 9033 . . . . . . . . 9 (((𝑁 · 𝑀) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0))
3319, 31, 32sylancl 404 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0))
3428, 33mpbid 145 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
35 qdivcl 9037 . . . . . . 7 (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ (𝑁 · 𝑀) ≠ 0) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ)
368, 19, 34, 35syl3anc 1172 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ)
3736flqcld 9587 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℤ)
3837zred 8778 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
3921, 38remulcld 7439 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) ∈ ℝ)
40 nnnn0 8590 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
41 flqmulnn0 9609 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4240, 41sylan 277 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4322, 11, 42syl2anc 403 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4410, 15, 39, 43lesub1dd 7956 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) ≤ ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
4522nnred 8347 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
4624nnred 8347 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
4722nngt0d 8377 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < 𝑁)
4824nngt0d 8377 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < 𝑀)
4945, 46, 47, 48mulgt0d 7527 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < (𝑁 · 𝑀))
50 modqval 9634 . . 3 (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
518, 19, 49, 50syl3anc 1172 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
52 zq 9020 . . . . 5 ((⌊‘(𝑁 · 𝐴)) ∈ ℤ → (⌊‘(𝑁 · 𝐴)) ∈ ℚ)
5314, 52syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℚ)
54 modqval 9634 . . . 4 (((⌊‘(𝑁 · 𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
5553, 19, 49, 54syl3anc 1172 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
56163adant2 960 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
57 flqdiv 9631 . . . . . . 7 (((𝑁 · 𝐴) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
5813, 56, 57syl2anc 403 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
59 flqdiv 9631 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
60593adant1 959 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
613zcnd 8779 . . . . . . . . . 10 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℂ)
6211, 61syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
6362, 25, 23, 27, 26divcanap5d 8198 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
6463fveq2d 5260 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) = (⌊‘((⌊‘𝐴) / 𝑀)))
65 qcn 9028 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
6611, 65syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℂ)
6766, 25, 23, 27, 26divcanap5d 8198 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
6867fveq2d 5260 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘(𝐴 / 𝑀)))
6960, 64, 683eqtr4rd 2128 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
7058, 69eqtrd 2117 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
7170oveq2d 5610 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))) = ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))
7271oveq2d 5610 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
7355, 72eqtrd 2117 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
7444, 51, 733brtr4d 3844 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  wne 2251   class class class wbr 3814  cfv 4972  (class class class)co 5594  cc 7269  cr 7270  0cc0 7271   · cmul 7276   < clt 7443  cle 7444  cmin 7574   # cap 7976   / cdiv 8055  cn 8334  0cn0 8583  cz 8660  cq 9013  cfl 9578   mod cmo 9632
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-mulrcl 7365  ax-addcom 7366  ax-mulcom 7367  ax-addass 7368  ax-mulass 7369  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-1rid 7373  ax-0id 7374  ax-rnegex 7375  ax-precex 7376  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-apti 7381  ax-pre-ltadd 7382  ax-pre-mulgt0 7383  ax-pre-mulext 7384  ax-arch 7385
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-id 4087  df-po 4090  df-iso 4091  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-1st 5849  df-2nd 5850  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-reap 7970  df-ap 7977  df-div 8056  df-inn 8335  df-n0 8584  df-z 8661  df-q 9014  df-rp 9044  df-fl 9580  df-mod 9633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator