ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulnn GIF version

Theorem modqmulnn 10310
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqmulnn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))

Proof of Theorem modqmulnn
StepHypRef Expression
1 nnq 9604 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
213ad2ant1 1018 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℚ)
3 flqcl 10241 . . . . . . 7 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
4 zq 9597 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
53, 4syl 14 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
653ad2ant2 1019 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘𝐴) ∈ ℚ)
7 qmulcl 9608 . . . . 5 ((𝑁 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ∈ ℚ)
82, 6, 7syl2anc 411 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℚ)
9 qre 9596 . . . 4 ((𝑁 · (⌊‘𝐴)) ∈ ℚ → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
108, 9syl 14 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
11 simp2 998 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℚ)
12 qmulcl 9608 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
132, 11, 12syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝐴) ∈ ℚ)
1413flqcld 10245 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℤ)
1514zred 9346 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
16 nnmulcl 8911 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
17 nnq 9604 . . . . . . 7 ((𝑁 · 𝑀) ∈ ℕ → (𝑁 · 𝑀) ∈ ℚ)
1816, 17syl 14 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ)
19183adant2 1016 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ)
20 qre 9596 . . . . 5 ((𝑁 · 𝑀) ∈ ℚ → (𝑁 · 𝑀) ∈ ℝ)
2119, 20syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
22 simp1 997 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℕ)
2322nncnd 8904 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
24 simp3 999 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
2524nncnd 8904 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
2622nnap0d 8936 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 # 0)
2724nnap0d 8936 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 # 0)
2823, 25, 26, 27mulap0d 8588 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) # 0)
29 0z 9235 . . . . . . . . . 10 0 ∈ ℤ
30 zq 9597 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ ℚ)
3129, 30ax-mp 5 . . . . . . . . 9 0 ∈ ℚ
32 qapne 9610 . . . . . . . . 9 (((𝑁 · 𝑀) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0))
3319, 31, 32sylancl 413 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0))
3428, 33mpbid 147 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
35 qdivcl 9614 . . . . . . 7 (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ (𝑁 · 𝑀) ≠ 0) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ)
368, 19, 34, 35syl3anc 1238 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ)
3736flqcld 10245 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℤ)
3837zred 9346 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
3921, 38remulcld 7962 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) ∈ ℝ)
40 nnnn0 9154 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
41 flqmulnn0 10267 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4240, 41sylan 283 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4322, 11, 42syl2anc 411 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4410, 15, 39, 43lesub1dd 8492 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) ≤ ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
4522nnred 8903 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
4624nnred 8903 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
4722nngt0d 8934 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < 𝑁)
4824nngt0d 8934 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < 𝑀)
4945, 46, 47, 48mulgt0d 8054 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < (𝑁 · 𝑀))
50 modqval 10292 . . 3 (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
518, 19, 49, 50syl3anc 1238 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
52 zq 9597 . . . . 5 ((⌊‘(𝑁 · 𝐴)) ∈ ℤ → (⌊‘(𝑁 · 𝐴)) ∈ ℚ)
5314, 52syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℚ)
54 modqval 10292 . . . 4 (((⌊‘(𝑁 · 𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
5553, 19, 49, 54syl3anc 1238 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
56163adant2 1016 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
57 flqdiv 10289 . . . . . . 7 (((𝑁 · 𝐴) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
5813, 56, 57syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
59 flqdiv 10289 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
60593adant1 1015 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
613zcnd 9347 . . . . . . . . . 10 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℂ)
6211, 61syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
6362, 25, 23, 27, 26divcanap5d 8746 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
6463fveq2d 5511 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) = (⌊‘((⌊‘𝐴) / 𝑀)))
65 qcn 9605 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
6611, 65syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℂ)
6766, 25, 23, 27, 26divcanap5d 8746 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
6867fveq2d 5511 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘(𝐴 / 𝑀)))
6960, 64, 683eqtr4rd 2219 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
7058, 69eqtrd 2208 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
7170oveq2d 5881 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))) = ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))
7271oveq2d 5881 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
7355, 72eqtrd 2208 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
7444, 51, 733brtr4d 4030 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2146  wne 2345   class class class wbr 3998  cfv 5208  (class class class)co 5865  cc 7784  cr 7785  0cc0 7786   · cmul 7791   < clt 7966  cle 7967  cmin 8102   # cap 8512   / cdiv 8601  cn 8890  0cn0 9147  cz 9224  cq 9590  cfl 10236   mod cmo 10290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-n0 9148  df-z 9225  df-q 9591  df-rp 9623  df-fl 10238  df-mod 10291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator