ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulnn GIF version

Theorem modqmulnn 10434
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqmulnn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))

Proof of Theorem modqmulnn
StepHypRef Expression
1 nnq 9707 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
213ad2ant1 1020 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℚ)
3 flqcl 10363 . . . . . . 7 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
4 zq 9700 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
53, 4syl 14 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
653ad2ant2 1021 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘𝐴) ∈ ℚ)
7 qmulcl 9711 . . . . 5 ((𝑁 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ∈ ℚ)
82, 6, 7syl2anc 411 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℚ)
9 qre 9699 . . . 4 ((𝑁 · (⌊‘𝐴)) ∈ ℚ → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
108, 9syl 14 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
11 simp2 1000 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℚ)
12 qmulcl 9711 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
132, 11, 12syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝐴) ∈ ℚ)
1413flqcld 10367 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℤ)
1514zred 9448 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
16 nnmulcl 9011 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
17 nnq 9707 . . . . . . 7 ((𝑁 · 𝑀) ∈ ℕ → (𝑁 · 𝑀) ∈ ℚ)
1816, 17syl 14 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ)
19183adant2 1018 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℚ)
20 qre 9699 . . . . 5 ((𝑁 · 𝑀) ∈ ℚ → (𝑁 · 𝑀) ∈ ℝ)
2119, 20syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
22 simp1 999 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℕ)
2322nncnd 9004 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
24 simp3 1001 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
2524nncnd 9004 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
2622nnap0d 9036 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 # 0)
2724nnap0d 9036 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 # 0)
2823, 25, 26, 27mulap0d 8685 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) # 0)
29 0z 9337 . . . . . . . . . 10 0 ∈ ℤ
30 zq 9700 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ ℚ)
3129, 30ax-mp 5 . . . . . . . . 9 0 ∈ ℚ
32 qapne 9713 . . . . . . . . 9 (((𝑁 · 𝑀) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0))
3319, 31, 32sylancl 413 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) # 0 ↔ (𝑁 · 𝑀) ≠ 0))
3428, 33mpbid 147 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
35 qdivcl 9717 . . . . . . 7 (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ (𝑁 · 𝑀) ≠ 0) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ)
368, 19, 34, 35syl3anc 1249 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℚ)
3736flqcld 10367 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℤ)
3837zred 9448 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
3921, 38remulcld 8057 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) ∈ ℝ)
40 nnnn0 9256 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
41 flqmulnn0 10389 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4240, 41sylan 283 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4322, 11, 42syl2anc 411 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
4410, 15, 39, 43lesub1dd 8588 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) ≤ ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
4522nnred 9003 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
4624nnred 9003 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
4722nngt0d 9034 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < 𝑁)
4824nngt0d 9034 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < 𝑀)
4945, 46, 47, 48mulgt0d 8149 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 0 < (𝑁 · 𝑀))
50 modqval 10416 . . 3 (((𝑁 · (⌊‘𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
518, 19, 49, 50syl3anc 1249 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
52 zq 9700 . . . . 5 ((⌊‘(𝑁 · 𝐴)) ∈ ℤ → (⌊‘(𝑁 · 𝐴)) ∈ ℚ)
5314, 52syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℚ)
54 modqval 10416 . . . 4 (((⌊‘(𝑁 · 𝐴)) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℚ ∧ 0 < (𝑁 · 𝑀)) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
5553, 19, 49, 54syl3anc 1249 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
56163adant2 1018 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
57 flqdiv 10413 . . . . . . 7 (((𝑁 · 𝐴) ∈ ℚ ∧ (𝑁 · 𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
5813, 56, 57syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
59 flqdiv 10413 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
60593adant1 1017 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
613zcnd 9449 . . . . . . . . . 10 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℂ)
6211, 61syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
6362, 25, 23, 27, 26divcanap5d 8844 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
6463fveq2d 5562 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) = (⌊‘((⌊‘𝐴) / 𝑀)))
65 qcn 9708 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
6611, 65syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℂ)
6766, 25, 23, 27, 26divcanap5d 8844 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
6867fveq2d 5562 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘(𝐴 / 𝑀)))
6960, 64, 683eqtr4rd 2240 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
7058, 69eqtrd 2229 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
7170oveq2d 5938 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))) = ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))
7271oveq2d 5938 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
7355, 72eqtrd 2229 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
7444, 51, 733brtr4d 4065 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879   · cmul 7884   < clt 8061  cle 8062  cmin 8197   # cap 8608   / cdiv 8699  cn 8990  0cn0 9249  cz 9326  cq 9693  cfl 10358   mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator