| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | GIF version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcl 8023 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 7994 |
| This theorem is referenced by: muladd11r 8201 negeu 8236 addsubass 8255 subsub2 8273 subsub4 8278 pnpcan 8284 pnncan 8286 addsub4 8288 pnpncand 8420 apreim 8649 addext 8656 aprcl 8692 aptap 8696 divdirap 8743 recp1lt1 8945 cju 9007 cnref1o 9744 modsumfzodifsn 10507 expaddzap 10694 binom2 10762 binom3 10768 sqoddm1div8 10804 mulsubdivbinom2ap 10822 nn0opthlem1d 10831 reval 11033 imval 11034 crre 11041 remullem 11055 imval2 11078 cjreim2 11088 cnrecnv 11094 resqrexlemcalc1 11198 maxabslemab 11390 maxltsup 11402 max0addsup 11403 minabs 11420 bdtrilem 11423 bdtri 11424 addcn2 11494 fsumadd 11590 isumadd 11615 binomlem 11667 efaddlem 11858 ef4p 11878 cosval 11887 cosf 11889 tanval2ap 11897 tanval3ap 11898 resin4p 11902 recos4p 11903 efival 11916 sinadd 11920 cosadd 11921 tanaddap 11923 pythagtriplem1 12461 pythagtriplem12 12471 pythagtriplem16 12475 pythagtriplem17 12476 pcbc 12547 mul4sqlem 12589 4sqlem14 12600 oddennn 12636 mulgdirlem 13361 gsumfzconst 13549 gsumfzfsumlemm 14221 addccncf 14944 limcimolemlt 15008 dvaddxxbr 15045 plyaddlem1 15091 ptolemy 15168 rpcxpadd 15249 binom4 15323 lgsquad2lem1 15430 2lgslem3d1 15449 qdencn 15784 iooref1o 15791 apdifflemr 15804 |
| Copyright terms: Public domain | W3C validator |