| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | GIF version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcl 8070 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 + caddc 7948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 8041 |
| This theorem is referenced by: muladd11r 8248 negeu 8283 addsubass 8302 subsub2 8320 subsub4 8325 pnpcan 8331 pnncan 8333 addsub4 8335 pnpncand 8467 apreim 8696 addext 8703 aprcl 8739 aptap 8743 divdirap 8790 recp1lt1 8992 cju 9054 cnref1o 9792 modsumfzodifsn 10563 expaddzap 10750 binom2 10818 binom3 10824 sqoddm1div8 10860 mulsubdivbinom2ap 10878 nn0opthlem1d 10887 reval 11235 imval 11236 crre 11243 remullem 11257 imval2 11280 cjreim2 11290 cnrecnv 11296 resqrexlemcalc1 11400 maxabslemab 11592 maxltsup 11604 max0addsup 11605 minabs 11622 bdtrilem 11625 bdtri 11626 addcn2 11696 fsumadd 11792 isumadd 11817 binomlem 11869 efaddlem 12060 ef4p 12080 cosval 12089 cosf 12091 tanval2ap 12099 tanval3ap 12100 resin4p 12104 recos4p 12105 efival 12118 sinadd 12122 cosadd 12123 tanaddap 12125 pythagtriplem1 12663 pythagtriplem12 12673 pythagtriplem16 12677 pythagtriplem17 12678 pcbc 12749 mul4sqlem 12791 4sqlem14 12802 oddennn 12838 mulgdirlem 13564 gsumfzconst 13752 gsumfzfsumlemm 14424 addccncf 15147 limcimolemlt 15211 dvaddxxbr 15248 plyaddlem1 15294 ptolemy 15371 rpcxpadd 15452 binom4 15526 lgsquad2lem1 15633 2lgslem3d1 15652 qdencn 16107 iooref1o 16114 apdifflemr 16127 |
| Copyright terms: Public domain | W3C validator |