| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | GIF version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcl 8049 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 + caddc 7927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 8020 |
| This theorem is referenced by: muladd11r 8227 negeu 8262 addsubass 8281 subsub2 8299 subsub4 8304 pnpcan 8310 pnncan 8312 addsub4 8314 pnpncand 8446 apreim 8675 addext 8682 aprcl 8718 aptap 8722 divdirap 8769 recp1lt1 8971 cju 9033 cnref1o 9771 modsumfzodifsn 10539 expaddzap 10726 binom2 10794 binom3 10800 sqoddm1div8 10836 mulsubdivbinom2ap 10854 nn0opthlem1d 10863 reval 11102 imval 11103 crre 11110 remullem 11124 imval2 11147 cjreim2 11157 cnrecnv 11163 resqrexlemcalc1 11267 maxabslemab 11459 maxltsup 11471 max0addsup 11472 minabs 11489 bdtrilem 11492 bdtri 11493 addcn2 11563 fsumadd 11659 isumadd 11684 binomlem 11736 efaddlem 11927 ef4p 11947 cosval 11956 cosf 11958 tanval2ap 11966 tanval3ap 11967 resin4p 11971 recos4p 11972 efival 11985 sinadd 11989 cosadd 11990 tanaddap 11992 pythagtriplem1 12530 pythagtriplem12 12540 pythagtriplem16 12544 pythagtriplem17 12545 pcbc 12616 mul4sqlem 12658 4sqlem14 12669 oddennn 12705 mulgdirlem 13431 gsumfzconst 13619 gsumfzfsumlemm 14291 addccncf 15014 limcimolemlt 15078 dvaddxxbr 15115 plyaddlem1 15161 ptolemy 15238 rpcxpadd 15319 binom4 15393 lgsquad2lem1 15500 2lgslem3d1 15519 qdencn 15899 iooref1o 15906 apdifflemr 15919 |
| Copyright terms: Public domain | W3C validator |