Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcld | GIF version |
Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcl 7899 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-addcl 7870 |
This theorem is referenced by: muladd11r 8075 negeu 8110 addsubass 8129 subsub2 8147 subsub4 8152 pnpcan 8158 pnncan 8160 addsub4 8162 pnpncand 8294 apreim 8522 addext 8529 aprcl 8565 divdirap 8614 recp1lt1 8815 cju 8877 cnref1o 9609 modsumfzodifsn 10352 expaddzap 10520 binom2 10587 binom3 10593 sqoddm1div8 10629 nn0opthlem1d 10654 reval 10813 imval 10814 crre 10821 remullem 10835 imval2 10858 cjreim2 10868 cnrecnv 10874 resqrexlemcalc1 10978 maxabslemab 11170 maxltsup 11182 max0addsup 11183 minabs 11199 bdtrilem 11202 bdtri 11203 addcn2 11273 fsumadd 11369 isumadd 11394 binomlem 11446 efaddlem 11637 ef4p 11657 cosval 11666 cosf 11668 tanval2ap 11676 tanval3ap 11677 resin4p 11681 recos4p 11682 efival 11695 sinadd 11699 cosadd 11700 tanaddap 11702 pythagtriplem1 12219 pythagtriplem12 12229 pythagtriplem16 12233 pythagtriplem17 12234 pcbc 12303 mul4sqlem 12345 oddennn 12347 addccncf 13380 limcimolemlt 13427 dvaddxxbr 13459 ptolemy 13539 rpcxpadd 13620 binom4 13691 qdencn 14059 iooref1o 14066 apdifflemr 14079 |
Copyright terms: Public domain | W3C validator |