![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcld | GIF version |
Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcl 7997 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 7968 |
This theorem is referenced by: muladd11r 8175 negeu 8210 addsubass 8229 subsub2 8247 subsub4 8252 pnpcan 8258 pnncan 8260 addsub4 8262 pnpncand 8394 apreim 8622 addext 8629 aprcl 8665 aptap 8669 divdirap 8716 recp1lt1 8918 cju 8980 cnref1o 9716 modsumfzodifsn 10467 expaddzap 10654 binom2 10722 binom3 10728 sqoddm1div8 10764 mulsubdivbinom2ap 10782 nn0opthlem1d 10791 reval 10993 imval 10994 crre 11001 remullem 11015 imval2 11038 cjreim2 11048 cnrecnv 11054 resqrexlemcalc1 11158 maxabslemab 11350 maxltsup 11362 max0addsup 11363 minabs 11379 bdtrilem 11382 bdtri 11383 addcn2 11453 fsumadd 11549 isumadd 11574 binomlem 11626 efaddlem 11817 ef4p 11837 cosval 11846 cosf 11848 tanval2ap 11856 tanval3ap 11857 resin4p 11861 recos4p 11862 efival 11875 sinadd 11879 cosadd 11880 tanaddap 11882 pythagtriplem1 12403 pythagtriplem12 12413 pythagtriplem16 12417 pythagtriplem17 12418 pcbc 12489 mul4sqlem 12531 4sqlem14 12542 oddennn 12549 mulgdirlem 13223 gsumfzconst 13411 gsumfzfsumlemm 14075 addccncf 14754 limcimolemlt 14818 dvaddxxbr 14850 plyaddlem1 14893 ptolemy 14959 rpcxpadd 15040 binom4 15111 qdencn 15517 iooref1o 15524 apdifflemr 15537 |
Copyright terms: Public domain | W3C validator |