| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | GIF version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcl 8032 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 (class class class)co 5934 ℂcc 7905 + caddc 7910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 8003 |
| This theorem is referenced by: muladd11r 8210 negeu 8245 addsubass 8264 subsub2 8282 subsub4 8287 pnpcan 8293 pnncan 8295 addsub4 8297 pnpncand 8429 apreim 8658 addext 8665 aprcl 8701 aptap 8705 divdirap 8752 recp1lt1 8954 cju 9016 cnref1o 9754 modsumfzodifsn 10522 expaddzap 10709 binom2 10777 binom3 10783 sqoddm1div8 10819 mulsubdivbinom2ap 10837 nn0opthlem1d 10846 reval 11079 imval 11080 crre 11087 remullem 11101 imval2 11124 cjreim2 11134 cnrecnv 11140 resqrexlemcalc1 11244 maxabslemab 11436 maxltsup 11448 max0addsup 11449 minabs 11466 bdtrilem 11469 bdtri 11470 addcn2 11540 fsumadd 11636 isumadd 11661 binomlem 11713 efaddlem 11904 ef4p 11924 cosval 11933 cosf 11935 tanval2ap 11943 tanval3ap 11944 resin4p 11948 recos4p 11949 efival 11962 sinadd 11966 cosadd 11967 tanaddap 11969 pythagtriplem1 12507 pythagtriplem12 12517 pythagtriplem16 12521 pythagtriplem17 12522 pcbc 12593 mul4sqlem 12635 4sqlem14 12646 oddennn 12682 mulgdirlem 13407 gsumfzconst 13595 gsumfzfsumlemm 14267 addccncf 14990 limcimolemlt 15054 dvaddxxbr 15091 plyaddlem1 15137 ptolemy 15214 rpcxpadd 15295 binom4 15369 lgsquad2lem1 15476 2lgslem3d1 15495 qdencn 15830 iooref1o 15837 apdifflemr 15850 |
| Copyright terms: Public domain | W3C validator |