Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcld | GIF version |
Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcl 7874 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 + caddc 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-addcl 7845 |
This theorem is referenced by: muladd11r 8050 negeu 8085 addsubass 8104 subsub2 8122 subsub4 8127 pnpcan 8133 pnncan 8135 addsub4 8137 pnpncand 8269 apreim 8497 addext 8504 aprcl 8540 divdirap 8589 recp1lt1 8790 cju 8852 cnref1o 9584 modsumfzodifsn 10327 expaddzap 10495 binom2 10562 binom3 10568 sqoddm1div8 10604 nn0opthlem1d 10629 reval 10787 imval 10788 crre 10795 remullem 10809 imval2 10832 cjreim2 10842 cnrecnv 10848 resqrexlemcalc1 10952 maxabslemab 11144 maxltsup 11156 max0addsup 11157 minabs 11173 bdtrilem 11176 bdtri 11177 addcn2 11247 fsumadd 11343 isumadd 11368 binomlem 11420 efaddlem 11611 ef4p 11631 cosval 11640 cosf 11642 tanval2ap 11650 tanval3ap 11651 resin4p 11655 recos4p 11656 efival 11669 sinadd 11673 cosadd 11674 tanaddap 11676 pythagtriplem1 12193 pythagtriplem12 12203 pythagtriplem16 12207 pythagtriplem17 12208 pcbc 12277 mul4sqlem 12319 oddennn 12321 addccncf 13186 limcimolemlt 13233 dvaddxxbr 13265 ptolemy 13345 rpcxpadd 13426 binom4 13497 qdencn 13866 iooref1o 13873 apdifflemr 13886 |
Copyright terms: Public domain | W3C validator |