![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcld | GIF version |
Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcl 7938 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 + caddc 7816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 7909 |
This theorem is referenced by: muladd11r 8115 negeu 8150 addsubass 8169 subsub2 8187 subsub4 8192 pnpcan 8198 pnncan 8200 addsub4 8202 pnpncand 8334 apreim 8562 addext 8569 aprcl 8605 aptap 8609 divdirap 8656 recp1lt1 8858 cju 8920 cnref1o 9652 modsumfzodifsn 10398 expaddzap 10566 binom2 10634 binom3 10640 sqoddm1div8 10676 mulsubdivbinom2ap 10693 nn0opthlem1d 10702 reval 10860 imval 10861 crre 10868 remullem 10882 imval2 10905 cjreim2 10915 cnrecnv 10921 resqrexlemcalc1 11025 maxabslemab 11217 maxltsup 11229 max0addsup 11230 minabs 11246 bdtrilem 11249 bdtri 11250 addcn2 11320 fsumadd 11416 isumadd 11441 binomlem 11493 efaddlem 11684 ef4p 11704 cosval 11713 cosf 11715 tanval2ap 11723 tanval3ap 11724 resin4p 11728 recos4p 11729 efival 11742 sinadd 11746 cosadd 11747 tanaddap 11749 pythagtriplem1 12267 pythagtriplem12 12277 pythagtriplem16 12281 pythagtriplem17 12282 pcbc 12351 mul4sqlem 12393 oddennn 12395 mulgdirlem 13019 addccncf 14125 limcimolemlt 14172 dvaddxxbr 14204 ptolemy 14284 rpcxpadd 14365 binom4 14436 qdencn 14814 iooref1o 14821 apdifflemr 14834 |
Copyright terms: Public domain | W3C validator |