| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcld | GIF version | ||
| Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcl 8120 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 + caddc 7998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcl 8091 |
| This theorem is referenced by: muladd11r 8298 negeu 8333 addsubass 8352 subsub2 8370 subsub4 8375 pnpcan 8381 pnncan 8383 addsub4 8385 pnpncand 8517 apreim 8746 addext 8753 aprcl 8789 aptap 8793 divdirap 8840 recp1lt1 9042 cju 9104 cnref1o 9842 modsumfzodifsn 10613 expaddzap 10800 binom2 10868 binom3 10874 sqoddm1div8 10910 mulsubdivbinom2ap 10928 nn0opthlem1d 10937 reval 11355 imval 11356 crre 11363 remullem 11377 imval2 11400 cjreim2 11410 cnrecnv 11416 resqrexlemcalc1 11520 maxabslemab 11712 maxltsup 11724 max0addsup 11725 minabs 11742 bdtrilem 11745 bdtri 11746 addcn2 11816 fsumadd 11912 isumadd 11937 binomlem 11989 efaddlem 12180 ef4p 12200 cosval 12209 cosf 12211 tanval2ap 12219 tanval3ap 12220 resin4p 12224 recos4p 12225 efival 12238 sinadd 12242 cosadd 12243 tanaddap 12245 pythagtriplem1 12783 pythagtriplem12 12793 pythagtriplem16 12797 pythagtriplem17 12798 pcbc 12869 mul4sqlem 12911 4sqlem14 12922 oddennn 12958 mulgdirlem 13685 gsumfzconst 13873 gsumfzfsumlemm 14545 addccncf 15268 limcimolemlt 15332 dvaddxxbr 15369 plyaddlem1 15415 ptolemy 15492 rpcxpadd 15573 binom4 15647 lgsquad2lem1 15754 2lgslem3d1 15773 qdencn 16354 iooref1o 16361 apdifflemr 16374 |
| Copyright terms: Public domain | W3C validator |