Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcld | GIF version |
Description: Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcl 7886 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5850 ℂcc 7759 + caddc 7764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-addcl 7857 |
This theorem is referenced by: muladd11r 8062 negeu 8097 addsubass 8116 subsub2 8134 subsub4 8139 pnpcan 8145 pnncan 8147 addsub4 8149 pnpncand 8281 apreim 8509 addext 8516 aprcl 8552 divdirap 8601 recp1lt1 8802 cju 8864 cnref1o 9596 modsumfzodifsn 10339 expaddzap 10507 binom2 10574 binom3 10580 sqoddm1div8 10616 nn0opthlem1d 10641 reval 10800 imval 10801 crre 10808 remullem 10822 imval2 10845 cjreim2 10855 cnrecnv 10861 resqrexlemcalc1 10965 maxabslemab 11157 maxltsup 11169 max0addsup 11170 minabs 11186 bdtrilem 11189 bdtri 11190 addcn2 11260 fsumadd 11356 isumadd 11381 binomlem 11433 efaddlem 11624 ef4p 11644 cosval 11653 cosf 11655 tanval2ap 11663 tanval3ap 11664 resin4p 11668 recos4p 11669 efival 11682 sinadd 11686 cosadd 11687 tanaddap 11689 pythagtriplem1 12206 pythagtriplem12 12216 pythagtriplem16 12220 pythagtriplem17 12221 pcbc 12290 mul4sqlem 12332 oddennn 12334 addccncf 13301 limcimolemlt 13348 dvaddxxbr 13380 ptolemy 13460 rpcxpadd 13541 binom4 13612 qdencn 13981 iooref1o 13988 apdifflemr 14001 |
Copyright terms: Public domain | W3C validator |