| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > redcwlpo | GIF version | ||
| Description: Decidability of real
number equality implies the Weak Limited Principle
of Omniscience (WLPO). We expect that we'd need some form of countable
choice to prove the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 16333). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones. Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO". WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10431 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| Ref | Expression |
|---|---|
| redcwlpo | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) | |
| 2 | elmapi 6787 | . . . . . . . . 9 ⊢ (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1}) | |
| 3 | 2 | adantl 277 | . . . . . . . 8 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1}) |
| 4 | oveq2 5982 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
| 5 | 4 | oveq2d 5990 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
| 6 | fveq2 5603 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → (𝑓‘𝑖) = (𝑓‘𝑗)) | |
| 7 | 5, 6 | oveq12d 5992 | . . . . . . . . 9 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = ((1 / (2↑𝑗)) · (𝑓‘𝑗))) |
| 8 | 7 | cbvsumv 11838 | . . . . . . . 8 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓‘𝑗)) |
| 9 | 3, 8 | trilpolemcl 16316 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ) |
| 10 | 1red 8129 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ) | |
| 11 | eqeq1 2216 | . . . . . . . . 9 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (𝑥 = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 𝑦)) | |
| 12 | 11 | dcbid 842 | . . . . . . . 8 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (DECID 𝑥 = 𝑦 ↔ DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 𝑦)) |
| 13 | eqeq2 2219 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1)) | |
| 14 | 13 | dcbid 842 | . . . . . . . 8 ⊢ (𝑦 = 1 → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 𝑦 ↔ DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1)) |
| 15 | 12, 14 | rspc2v 2900 | . . . . . . 7 ⊢ ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1)) |
| 16 | 9, 10, 15 | syl2anc 411 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1)) |
| 17 | 1, 16 | mpd 13 | . . . . 5 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1) |
| 18 | 3, 8 | redcwlpolemeq1 16333 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1 ↔ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1)) |
| 19 | 18 | dcbid 842 | . . . . 5 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1 ↔ DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1)) |
| 20 | 17, 19 | mpbid 147 | . . . 4 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1) |
| 21 | 20 | ralrimiva 2583 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1) |
| 22 | nnex 9084 | . . . 4 ⊢ ℕ ∈ V | |
| 23 | iswomninn 16329 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1)) | |
| 24 | 22, 23 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1) |
| 25 | 21, 24 | sylibr 134 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ℕ ∈ WOmni) |
| 26 | nnenom 10623 | . . 3 ⊢ ℕ ≈ ω | |
| 27 | enwomni 7305 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni)) | |
| 28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ℕ ∈ WOmni ↔ ω ∈ WOmni) |
| 29 | 25, 28 | sylib 122 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 838 = wceq 1375 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 {cpr 3647 class class class wbr 4062 ωcom 4659 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ↑𝑚 cmap 6765 ≈ cen 6855 WOmnicwomni 7298 ℝcr 7966 0cc0 7967 1c1 7968 · cmul 7972 / cdiv 8787 ℕcn 9078 2c2 9129 ↑cexp 10727 Σcsu 11830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-2o 6533 df-oadd 6536 df-er 6650 df-map 6767 df-en 6858 df-dom 6859 df-fin 6860 df-womni 7299 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-ico 10058 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-ihash 10965 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |