Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redcwlpo GIF version

Theorem redcwlpo 15075
Description: Decidability of real number equality implies the Weak Limited Principle of Omniscience (WLPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 15074). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones.

Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO".

WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10260 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.)

Assertion
Ref Expression
redcwlpo (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem redcwlpo
Dummy variables 𝑓 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
2 elmapi 6683 . . . . . . . . 9 (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1})
32adantl 277 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1})
4 oveq2 5896 . . . . . . . . . . 11 (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗))
54oveq2d 5904 . . . . . . . . . 10 (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗)))
6 fveq2 5527 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
75, 6oveq12d 5906 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓𝑖)) = ((1 / (2↑𝑗)) · (𝑓𝑗)))
87cbvsumv 11382 . . . . . . . 8 Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓𝑗))
93, 8trilpolemcl 15057 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ)
10 1red 7985 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ)
11 eqeq1 2194 . . . . . . . . 9 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥 = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦))
1211dcbid 839 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦))
13 eqeq2 2197 . . . . . . . . 9 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
1413dcbid 839 . . . . . . . 8 (𝑦 = 1 → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
1512, 14rspc2v 2866 . . . . . . 7 ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
169, 10, 15syl2anc 411 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
171, 16mpd 13 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1)
183, 8redcwlpolemeq1 15074 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ↔ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
1918dcbid 839 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ↔ DECID𝑧 ∈ ℕ (𝑓𝑧) = 1))
2017, 19mpbid 147 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
2120ralrimiva 2560 . . 3 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
22 nnex 8938 . . . 4 ℕ ∈ V
23 iswomninn 15070 . . . 4 (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1))
2422, 23ax-mp 5 . . 3 (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
2521, 24sylibr 134 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ℕ ∈ WOmni)
26 nnenom 10447 . . 3 ℕ ≈ ω
27 enwomni 7181 . . 3 (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni))
2826, 27ax-mp 5 . 2 (ℕ ∈ WOmni ↔ ω ∈ WOmni)
2925, 28sylib 122 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1363  wcel 2158  wral 2465  Vcvv 2749  {cpr 3605   class class class wbr 4015  ωcom 4601  wf 5224  cfv 5228  (class class class)co 5888  𝑚 cmap 6661  cen 6751  WOmnicwomni 7174  cr 7823  0cc0 7824  1c1 7825   · cmul 7829   / cdiv 8642  cn 8932  2c2 8983  cexp 10532  Σcsu 11374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-2o 6431  df-oadd 6434  df-er 6548  df-map 6663  df-en 6754  df-dom 6755  df-fin 6756  df-womni 7175  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-ico 9907  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-ihash 10769  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator