Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redcwlpo GIF version

Theorem redcwlpo 16334
Description: Decidability of real number equality implies the Weak Limited Principle of Omniscience (WLPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 16333). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones.

Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO".

WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10431 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.)

Assertion
Ref Expression
redcwlpo (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem redcwlpo
Dummy variables 𝑓 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
2 elmapi 6787 . . . . . . . . 9 (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1})
32adantl 277 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1})
4 oveq2 5982 . . . . . . . . . . 11 (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗))
54oveq2d 5990 . . . . . . . . . 10 (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗)))
6 fveq2 5603 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
75, 6oveq12d 5992 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓𝑖)) = ((1 / (2↑𝑗)) · (𝑓𝑗)))
87cbvsumv 11838 . . . . . . . 8 Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓𝑗))
93, 8trilpolemcl 16316 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ)
10 1red 8129 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ)
11 eqeq1 2216 . . . . . . . . 9 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥 = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦))
1211dcbid 842 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦))
13 eqeq2 2219 . . . . . . . . 9 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
1413dcbid 842 . . . . . . . 8 (𝑦 = 1 → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
1512, 14rspc2v 2900 . . . . . . 7 ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
169, 10, 15syl2anc 411 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
171, 16mpd 13 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1)
183, 8redcwlpolemeq1 16333 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ↔ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
1918dcbid 842 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ↔ DECID𝑧 ∈ ℕ (𝑓𝑧) = 1))
2017, 19mpbid 147 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
2120ralrimiva 2583 . . 3 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
22 nnex 9084 . . . 4 ℕ ∈ V
23 iswomninn 16329 . . . 4 (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1))
2422, 23ax-mp 5 . . 3 (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
2521, 24sylibr 134 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ℕ ∈ WOmni)
26 nnenom 10623 . . 3 ℕ ≈ ω
27 enwomni 7305 . . 3 (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni))
2826, 27ax-mp 5 . 2 (ℕ ∈ WOmni ↔ ω ∈ WOmni)
2925, 28sylib 122 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 838   = wceq 1375  wcel 2180  wral 2488  Vcvv 2779  {cpr 3647   class class class wbr 4062  ωcom 4659  wf 5290  cfv 5294  (class class class)co 5974  𝑚 cmap 6765  cen 6855  WOmnicwomni 7298  cr 7966  0cc0 7967  1c1 7968   · cmul 7972   / cdiv 8787  cn 9078  2c2 9129  cexp 10727  Σcsu 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-womni 7299  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-ico 10058  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator