Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redcwlpo GIF version

Theorem redcwlpo 15786
Description: Decidability of real number equality implies the Weak Limited Principle of Omniscience (WLPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 15785). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones.

Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO".

WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10351 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.)

Assertion
Ref Expression
redcwlpo (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem redcwlpo
Dummy variables 𝑓 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
2 elmapi 6738 . . . . . . . . 9 (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1})
32adantl 277 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1})
4 oveq2 5933 . . . . . . . . . . 11 (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗))
54oveq2d 5941 . . . . . . . . . 10 (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗)))
6 fveq2 5561 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
75, 6oveq12d 5943 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓𝑖)) = ((1 / (2↑𝑗)) · (𝑓𝑗)))
87cbvsumv 11543 . . . . . . . 8 Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓𝑗))
93, 8trilpolemcl 15768 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ)
10 1red 8058 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ)
11 eqeq1 2203 . . . . . . . . 9 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥 = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦))
1211dcbid 839 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦))
13 eqeq2 2206 . . . . . . . . 9 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
1413dcbid 839 . . . . . . . 8 (𝑦 = 1 → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
1512, 14rspc2v 2881 . . . . . . 7 ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
169, 10, 15syl2anc 411 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
171, 16mpd 13 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1)
183, 8redcwlpolemeq1 15785 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ↔ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
1918dcbid 839 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ↔ DECID𝑧 ∈ ℕ (𝑓𝑧) = 1))
2017, 19mpbid 147 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
2120ralrimiva 2570 . . 3 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
22 nnex 9013 . . . 4 ℕ ∈ V
23 iswomninn 15781 . . . 4 (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1))
2422, 23ax-mp 5 . . 3 (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID𝑧 ∈ ℕ (𝑓𝑧) = 1)
2521, 24sylibr 134 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ℕ ∈ WOmni)
26 nnenom 10543 . . 3 ℕ ≈ ω
27 enwomni 7245 . . 3 (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni))
2826, 27ax-mp 5 . 2 (ℕ ∈ WOmni ↔ ω ∈ WOmni)
2925, 28sylib 122 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  {cpr 3624   class class class wbr 4034  ωcom 4627  wf 5255  cfv 5259  (class class class)co 5925  𝑚 cmap 6716  cen 6806  WOmnicwomni 7238  cr 7895  0cc0 7896  1c1 7897   · cmul 7901   / cdiv 8716  cn 9007  2c2 9058  cexp 10647  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-womni 7239  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator