| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > redcwlpo | GIF version | ||
| Description: Decidability of real
number equality implies the Weak Limited Principle
of Omniscience (WLPO). We expect that we'd need some form of countable
choice to prove the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 15785). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones. Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO". WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10351 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| Ref | Expression |
|---|---|
| redcwlpo | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) | |
| 2 | elmapi 6738 | . . . . . . . . 9 ⊢ (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1}) | |
| 3 | 2 | adantl 277 | . . . . . . . 8 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1}) |
| 4 | oveq2 5933 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
| 5 | 4 | oveq2d 5941 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
| 6 | fveq2 5561 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → (𝑓‘𝑖) = (𝑓‘𝑗)) | |
| 7 | 5, 6 | oveq12d 5943 | . . . . . . . . 9 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = ((1 / (2↑𝑗)) · (𝑓‘𝑗))) |
| 8 | 7 | cbvsumv 11543 | . . . . . . . 8 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓‘𝑗)) |
| 9 | 3, 8 | trilpolemcl 15768 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ) |
| 10 | 1red 8058 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ) | |
| 11 | eqeq1 2203 | . . . . . . . . 9 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (𝑥 = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 𝑦)) | |
| 12 | 11 | dcbid 839 | . . . . . . . 8 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (DECID 𝑥 = 𝑦 ↔ DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 𝑦)) |
| 13 | eqeq2 2206 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1)) | |
| 14 | 13 | dcbid 839 | . . . . . . . 8 ⊢ (𝑦 = 1 → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 𝑦 ↔ DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1)) |
| 15 | 12, 14 | rspc2v 2881 | . . . . . . 7 ⊢ ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1)) |
| 16 | 9, 10, 15 | syl2anc 411 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1)) |
| 17 | 1, 16 | mpd 13 | . . . . 5 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1) |
| 18 | 3, 8 | redcwlpolemeq1 15785 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1 ↔ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1)) |
| 19 | 18 | dcbid 839 | . . . . 5 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (DECID Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = 1 ↔ DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1)) |
| 20 | 17, 19 | mpbid 147 | . . . 4 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1) |
| 21 | 20 | ralrimiva 2570 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1) |
| 22 | nnex 9013 | . . . 4 ⊢ ℕ ∈ V | |
| 23 | iswomninn 15781 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1)) | |
| 24 | 22, 23 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1) |
| 25 | 21, 24 | sylibr 134 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ℕ ∈ WOmni) |
| 26 | nnenom 10543 | . . 3 ⊢ ℕ ≈ ω | |
| 27 | enwomni 7245 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni)) | |
| 28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ℕ ∈ WOmni ↔ ω ∈ WOmni) |
| 29 | 25, 28 | sylib 122 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 {cpr 3624 class class class wbr 4034 ωcom 4627 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 ↑𝑚 cmap 6716 ≈ cen 6806 WOmnicwomni 7238 ℝcr 7895 0cc0 7896 1c1 7897 · cmul 7901 / cdiv 8716 ℕcn 9007 2c2 9058 ↑cexp 10647 Σcsu 11535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-map 6718 df-en 6809 df-dom 6810 df-fin 6811 df-womni 7239 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-ico 9986 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |